
An Accessible CAPTCHA System for People
with Visual Disability –

Generation of Human/Computer Distinguish Test
with Documents on the Net

Michitomo Yamaguchi1,3, Toru Nakata2, Takeshi Okamoto3, and Hiroaki Kikuchi1

1 Department of Mathematical Modeling, Analysis and Simulation,
Graduate School of Advanced Mathematical Sciences, Meiji University,

Tokyo, #164-8525 Japan
2 Research Institute for Secure Systems, National Institute of Advanced Industrial Science

and Technology (AIST), Ibaraki, #305-8568 Japan
3 Graduate School of Technology and Sciences, Tsukuba University of Technology,

Ibaraki, #305-8521 Japan
yama3san@meiji.ac.jp, toru-nakata@aist.go.jp,

ken@cs.k.tsukuba-tech.ac.jp, kikn@meiji.ac.jp

Abstract. We propose a new scheme of CAPTCHA that does not become a per-
ceptual barrier for disable people. Our CAPTCHA system generates the tests in
verbal style, so its use is not limited in specific perceptual channels. The tests are
composed of several phrases and there are two kinds of tests: Human users try
to (1) distinguish a phrase of strange meaning from others, and (2) identify the
common topic among them. In our test we utilize open documents for material.
Note that there is quite a large amount of documents on the net, so we can gen-
erate brand-new tests every time. One may say that adversaries can look for the
phrases over the Internet and get several hints. Our system hides the sources by
substituting the consonants of the phrases against such an attack. The mechanism
is designed to imitate the phenomenon called “consonant gradation” of natural
languages.

Keywords: universal design, aid for the visually-impaired, verbal interaction,
information security.

1 Introduction

Demand for New Turing Tests for the Visually-Impaired. The purpose of this pa-
per is to construct an accessible CAPTCHA system specially for people with visual
disability.

The challenge-response tests of CAPTCHA [1] (Completely Automated Public Tur-
ing test to tell Computers and Human Apart) are widely used to differentiate humans
from software agents. Typically, the systems challenge the user to read distorted letters.
Artificial intelligence (AI) problems, which is easy for humans but difficult for current
AI, are frequently employed for the purpose.

C. Stephanidis and M. Antona (Eds.): UAHCI/HCII 2014, Part IV, LNCS 8516, pp. 119–130, 2014.
c© Springer International Publishing Switzerland 2014

120 M. Yamaguchi et al.

There exists a big social problem that most of the visually-impaired cannot pass
current CAPTCHAs. Several researchers [2–4] have pointed out that state-of-the-art
audio CAPTCHAs are too difficult for them. A recently study [5] shows that five
Japanese subjects with visual impairments have tried 10 times to pass Google’s audio
CAPTCHA, but nobody have succeeded even one. For those reason, audio CAPTCHAs
do not work for a substitution of visual ones.

We reconfirm requirements for CAPTCHA system as follows.

Accessibility. Tests depending on the specific perceptual ability should not be used as
CAPTCHA anymore.

Ability as a Turing Test. Tests must distinguish humans from software agents.
Ability of Auto-generating New Tests. The system must generate brand-new tests

without limitation on amount.

Related Work. Maintaining the quality of the tests is also a hard problem.
The test system of Holman et al. [6] shows pairs of a picture and a sound to a user

and test that the user can understand the situation of the materials. This scheme needs
to collect a myriad of pictures and sounds data. We deem it difficult to collect them
enough for practice.

Contextual cognition and theory of mind have been widely studied in cognitive sci-
ence. Sally-Anne test [7] is to distinguish one’s sphere of knowledge from others’ one.
In Dick’s novel, he showed an idea of Voigt-Kampff [8], which submitted eccentric
phrases and checked fluctuations of one’s feeling. These tests will work as a Turing test
but it is difficult to generate them automatically.

There are already CAPTCHA-like tests in verbal style. Contextual cognition test is
the most typical verbal test. Only the humans can evaluate naturalness of the phrases.
We can feel difference between natural human-made phrases and machine-translated
phrases (Yamamoto et al. [9]) or machine-synthesized phrases with moderate random-
ness (KK12 system of Kamoshida et al. [10]).

Regarding information security, the system has to generate brand-new tests for every
time, or the adversaries can pass the tests when the system set old ones again. Unfortu-
nately, conventional schemes leverage strings of private documents in order to prevent
adversaries from finding out their sources. It is a serious problem for us to use such
schemes as a CAPTCHA since the amount of private documents is finite. The system
cannot limitlessly generate brand-new tests.

Our Approach. We summarize our approach as follows.

– We utilize contextual cognition tests as a part of the accessible CAPTCHA system.
– Our system collects phrases from a large amount of documents on the Internet to

generate unbounded amount of tests.
– Using public documents is not safe, because adversaries may find out sources of

phrases by using search engines and utilize them to break the tests. As a counter-
measure, our particular system employs substitutes the consonants of the phrases.

The substitutes makes harder for adversaries to look for the sources of original
phrases from such erroneous ones. The mechanism is similar to the phenomenon called

An Accessible CAPTCHA System for People with Visual Disability 121

Test of detecting machine-synthesized semi-random phrases:
Q. Which phrase is generated by computer?

A) The world will little note, nor long remember what we say here.
B) Now we are dedicated in a larger people.

Test of detecting common topic:
Q. What is the topic common to the following sentences?
– Twitter is an social networking service.
– Vector processors are used for parallel computing.
A) Computer, B) Sports, C) Culture.

Example of Consonant Substitution:
Original: London, Paris, and Rome.
After distorted: Wonton, Pawi, and Home.

(a) Simple Example of Our Verbal Turing Tests.

(b) Aspect of Our Proposal.

Fig. 1. Sketch of Our Proposal

122 M. Yamaguchi et al.

“consonant gradation” of natural languages. We expect that most humans can interpret
the erroneous phrases to some extent due to linguistical ability.

Our Contributions. We show the brief sketch of our proposal in Fig. 1.
We propose two methods to generate contextual cognition tests. One is test of detect-

ing machine-synthesized phrased generated by Markov chain. It is based on the scheme
of KK12, and we try to redeem its weakness around discrete co-occurrence of terms.
The other method is to generate topic detection tests. The system shows several phrases
and challenges the user to answer the topic common to them.

We then implement them as CAPTCHA programs, and evaluate their performances
in three points: 1) ability as a Turing test, which must be easily solved by humans,
2) generation of new tests without limitation on amount, and 3) ability of hiding the
sources of the phrases appeared in the test.

2 Mechanism of Our System

2.1 Notations

Let X be an operation. We write x ← X to indicate that x is assigned by X. Let i, j
be integers. We denote an integral element x from i to j by x ∈ [i, j]. Let {xi} be a

finite set of x0, x1, We write x
D← {xi} to indicate that x is sampled randomly from

{xi} following a certain distribution D. If D = $, it means that x is sampled uniform-
randomly from {xi}. We use the same notation of a set for an array.

We will use a multi-associative memory C and write key ∈ C to indicate that key
is a registered key of C. Suppose that, e.g., C is the form C = {(key, val0), (key, val0),

(key, val0), (key, val1)} and we pick a value c as c
D← C(key). In this case, c will be

substituted by val0 with 75% and by val1 with 25%.
Let k be a string, which is an array of characters. We denote the length of string k by

|k|. We write K ← thesaurus(k) to indicate that a thesaurus outputsK , which is the set
of synonyms of k.

Let M be a stock of documents, which is utilized as the source of k. We write
{mi} ← search(+k, −K , M) to indicate that a set of phrases {mi} is retrieved from
M by searching with keyword k, without the words in K .

We need morphological analyses for our experiments. We write A ← ma(k) to in-
dicate that a morphological analyzer outputs A, which is the array of morphemes of k
and the last element of A is a terminal symbol. We denote a concatenation string of
each element in A by concat(A). We write {(segM,i, segR,i)} ← da(m) to indicate that
a dependence analyzer outputs two segments of documents, which are retrieved from
document m. For instance, da(“I hit the ball with the bat.”) outputs {(segM,i, segR,i)} =
{(“hit”, “the ball”), (“hit”, “with the bat”), . . . }.

2.2 Overview of the System

We begin by showing a framework of our system. Let V be a verifier, i.e. CAPTCHA
system and P be a prover, who tries to pass the test.V determines whether P is human
or not as follows.

An Accessible CAPTCHA System for People with Visual Disability 123

1) V runs a program G which generates AI problems using the contextual cognition if
V needs to differentiate human from software agent.

2) G collects phrases from source documentsM, analyzes morphology of them, and
generate/update corpora. We use open documents in the InternetM.

3) G generates a pair of (z, a) with the corpora, where z is a problem and a is its answer.
The phrases in z have a certain property such as contextual naturalness.

4) V repeats the steps 2)–3) N times and outputs {(zi, ai)} toP as a test.P can recognize
the test by his/her favorite perception since it consists of textual information.

5) V receives the answers {a′i} from P.V checks whether ai = a′i or not for all i. If the
number of correct answers is greater than t,V judges P as a human.

Note that we may skip the step (2) in the case of updating if G can generate brand-
new problems in high ratio.

2.3 Basic Components of the Process

We introduce several functions which are the building blocks of our AI problems.

Generation of Corpora. We generate two kinds of corpora: a n-th-order Markov
chain modeled corpus (C0) and a pre-post-state modeled corpus (C1). They are multi-
associative memories. The key of C0 is a morpheme n-gram and its values are co-
occurrence of it. The value of C1 is a morpheme and key is a couple of morphemes
before and after it.

We write C0 ← cpsgen0({m j}, n), e.g.: {(“I hit”, “the”), (“hit the”, “ball”), . . . } ←
cpsgen0({“I hit the ball with the bat.”}, 2), to indicate the following procedure for all
m j.

1) Compute mor j ← ma(m j). Assign C ← ∅ and i ← 0. C is a local variable, whose
data structure is the same as C0.

2) If i+n < |mor j|, go to the step (3). Otherwise, output C as C0 and finish this process.
3) Assign key ← (mor j[i], . . . ,mor j[i + n − 1]), val ← mor j[i + n], and C ←
{C, (key, val)}.

4) If mor j[i] is an independent morpheme, tags it.
5) Go to the step 2) after computing i← i + 1.

We write C1 ← cpsgen1({m j}), e.g.: {(“I the”, “hit”), (“hit the”, “the”), . . . } ←
cpsgen1({“I hit the ball with the bat.”}), to indicate the following procedure for all m j.

1) Compute mor j ← ma(m j). Assign C ← ∅ and i ← 1. C is a local variable, whose
data structure is the same as C1.

2) If i + 1 < |mor j|, go to the step 3). Otherwise, output C as C1 and finish this process.
3) Assign key← (mor j[i − 1],mor j[i + 1]), val← mor j[i], and C ← {C, (key, val)}.
4) Go to the step 2) after computing i← i + 1.

Generation of Synthesized Phrases. We generate synthesized phrases by Markov
chain of order n. Let �L be the minimum length of them and �H be the maximum one.
We write s← mcpgen(n, �L, �H ,C0) to indicate the following procedure.

124 M. Yamaguchi et al.

1) Pick �
$← [�L, �H].

2) We generate the beginning of a synthesized phrase. Pick key uniformly and ran-

domly from tagged keys in C0, val0
D← C0(key0), and assign ary← (key0, val0).

3) If val0 is a terminal symbol or � < |concat(ary)| , output concat(ary) as a synthesized
phrase and finish this process. Otherwise, go to the step 4).

4) Assign key0 ← (ary[|ary| − n], . . . , ary[|ary| − 1]). Pick val0
D← C0(key0) and assign

ary← (key0, val0). Go to the step 3).

2.4 Countermeasures against Breaking the Test by Software

Extraction of Discrete Co-occurrence Features. In a linguistic sense, co-occurrence
is interpreted as an indicator of semantic proximity or an idiomatic expression. We call
discrete co-occurrence to indicate a fixed pattern of terms that often appear together
with keeping several distance each other. For example, phrase of “not only . . . , but also
. . . ” is a discrete co-occurrence pattern.

We generate unnatural phrases by Markov chain of small order n. However, in that
case, it is difficult for us to generate phrases which have a feature of discrete co-
occurrence. Because each term of the phrases only depends on the last n terms. We
are afraid of adversaries to use this shortcoming.

Therefore, we extract the feature as Ĉ0 and append it to C0. We write Ĉ0 ← dcogen(
{m j}, n, C1) to indicate that, for all m j, the following procedure.

1) Compute {(segM,i, segR,i)} ← da(m j). Assign C ← ∅. C is a local variable, whose
data structure is the same as C0 and Ĉ0.

2) For (segM,i, segR,i) ∈ {(segM,i, segR,i)}, we do as follows.
2-1) Compute morM,i ← ma(segM,i) and morR,i ← ma(segR,i).

2-2) Assign key1 ← (morM,i[|morM,i| − 1],morR,i[0]). If key1 ∈ C1, pick val1
D←

C1(key1). Otherwise, we assign an empty string to val1.
2-3) Assign ary ← (morM,i, val1,morR,i), key1 ← (ary[0], . . . , ary[n − 1]), val1 ←

(ary[n], . . . , ary[|ary| − 1]), and C ← {C, (key1, val1)}. If key1[0] is an indepen-
dent morpheme, tags it.

3) We output C as Ĉ0 and finish this process.

The reason why we insert val1 between segM,i and segR,i is that because of random-
ness. The phrase which consists of segM,i and segR,i only cannot be used as a part of an
unnatural phrase.

Consonant Substitution to Hide the Document Source. To protect the tests from at-
tacks using search engines, our system hides the sources by substituting the consonants
of the phrases in them. Let sp be a string without consonant substitution and sa be a
string with one. Let rL be a the minimum number of the substitution and rH be a maxi-
mum one. We write sa ← cogd(sp, rL, rH) to indicate the following procedure.

1) This is an initialize step.
– Let LL be a set which includes all kinds of a group of Japanese consonant, that

is, LL = {“group − a”, “group − ka”, . . . }.

An Accessible CAPTCHA System for People with Visual Disability 125

– Convert kanji (Chinese characters) of sp into hiragana (Japanese syllabary
characters) and output the result as sm.

– Pick r
$← [rL, rH].

2) We check the consonant of sm.
– For each letter of sm, check which the group of consonant is and output the

result as an array Lsm , whose element is a kind of the group of Japanese conso-
nant. For example, we get (“group−a”, “group−sa”, “group−ga”, “group−a”)
from the term “a-sa-ga-o”.

– If |Lsm | < r, compute r ← |Lsm | − 1.
– If r > 0, go to the step (3). Otherwise, output sm as sa and finish this process.

3) We substitute the consonants of sm.

– Pick u
$← Lsm and v

$← LL\u.
– Check an index i of the element u in the array Lsm .
– Replace the i-th letter in ssm by a letter of the same group of vowel in v
– Go to the step (2) after computing r ← r − 1.

The output of cogd is similar to the phrase which includes several “mistakes” such
as misprint and mishearing. We expect that human can correct them by interpreting
contexts and his/her experience [11–13].

2.5 Detail of Generation of Our CAPTCHA

We show two kinds of AI problems concerning contextual cognition.

Markov-Chain Phrase Problem. Markov-chain phrase problem is that a prover selects
the most unnatural phrase among several synthesized phrases.

We use word salad as a synthesized phrase by Markov chain. Word salad usually
keeps grammatical correctness to some extent and stands for certain meanings. The
naturalness of their meanings differs in respect to the order n of the generation algorithm
i.e. the synthesized phrases become more unnatural as n is small, vice versa.

We give an account of an algorithm G0, which generates a Markov-chain phrase
problem. Let p be the number of choices andM be phrases of source documents. Let
nNP be the order of Markov chain to generate natural phrases and nWS be one to gener-
ate word salad. Let �L and �H be the minimum/maximum length of synthesized phrases,
respectively. Let rL and rH be the minimum/maximum number of substituting conso-
nants, respectively. We require p > 1, nNP > nWS > 0, �H > �L > 0 and rH > rL > 0. G0

is inputted p, nNP, nWS , �L, �H , rL, rL andM, then outputs (z, a) as follows.

1) The system collects phrases {m j}.
– Pick {m j} $←M.

2) The system generates corpora for Markov chain.
– Compute C0,NP ← cpsgen0({m j}, nNP) to generate natural phrases.
– Compute C0,WS ← cpsgen0({m j}, nWS) to generate word salad.

The system extracts discrete co-occurrence and append them to C0,WS .
– Compute C1 ← cpsgen1({m j}).
– Compute Ĉ0,WS ← dcogen({m j}, nWS ,C1).

126 M. Yamaguchi et al.

– Assign C0,WS ← {C0,WS , Ĉ0,WS }.
3) The system generates a word salad and natural phrases by Markov chain.

– Pick x
$← [0, p − 1].

– Compute sx ← mcpgen(nWS , �L, �H ,C0,WS).
– For i ∈ [0, p − 1]\x, compute si ← mcpgen(nNP, �L, �H,C0,NP).

4) The system substitutes consonants of the synthesized phrases.
– For i ∈ [0, p − 1], compute zi ← cogd(si, rL, rH).

5) The system outputs a problem.
– Assign z← (z0, . . . , zp−1) and a← x.

Topic Detection Problem. Topic detection problem is that a prover selects the most
related keyword with submitted phrases from choices.

We try to generate the phrases which do not include strings of the choices by using a
thesaurus. Moreover, we append a phrase which is not related with the keyword to ones
which are related with it.

We give an account of an algorithm G1, which generates a topic detection problem.
Let q be the number of submitted phrases andK be a set of keyword. We require p > 1,
q > 2, nNP > 0, �H > �L > 0 and rH > rL > 0. G1 is inputted p, q, nNP, �L, �H , rL, rL,
K , andM, then outputs (z, a) as follows.

1) The system chooses a keyword keyt used as a correct answer and generate a set K̂t,
whose element is a synonym of keyt.

– Pick keyt
$← K and computeK ← K\keyt.

– Compute K̂t ← thesaurus(keyt).
2) Let Kd be a set of a dummy keyword and K̂d be a set, whose element is a synonym

of the corresponding element of Kd. Assign Kd ← ∅ and K̂d ← ∅. To generate K̂d,
repeat the following steps if |Kd| < p − 1.

– Pick keyd
$← K\Kd.

– Assign Kd ← {Kd, keyd}.
– Compute K̂′d ← thesaurus(keyd) and assign K̂d ← {K̂d, K̂′d}.

3) The system extracts phrases, which are related with keyt but do not include strings
of the choices.

– For ˆkeyt ∈ K̂t, {m j} ← search(+ ˆkeyt,−{keyt,Kd},M). For simplicity, we as-
sume that {m j} in this step includes the results for all ˆkeyt.

– Compute C0,NP ← cpsgen0({m j}, nNP).

– Pick x
$← [0, q − 1]. For i ∈ [0, q − 1]\x, compute si ← mcpgen(nNP, �L,

�H ,C0,NP).
4) The system extracts phrases, which are related with a dummy keyword ˆkeyd but do

not include strings of the choices.

– Pick ˆkeyd
$← K̂d.

– Compute {m j} ← search(+ ˆkeyd,−{keyt,Kd},M) and C0,NP ← cpsgen0({m j},
nNP).

– Compute sx ← mcpgen(nNP, �L, �H,C0,NP).
5) The system substitutes consonants of the extracted phrases.

– For i ∈ [0, q − 1], compute zi ← cogd(si, rL, rH).
6) The system outputs a problem. The choices consist of keyt and the elements of Kd.

– Assign z← (z0, . . . , zq−1) and a← keyt.

An Accessible CAPTCHA System for People with Visual Disability 127

3 Experiment

3.1 Tools and Parameters

We implemented an evaluation program (hereinafter referred to as the EvaPro) to eval-
uate our proposals. We used MeCab [14] to analyze morphology, Cabocha [15] to ana-
lyze dependence, and Weblio thesaurus [16] to get synonyms of queried terms.

We show several parameters of our AI problems in EvaPro.

Markov-Chain Phrase Problem (G0). We employed “Aozora Bunko [17]” asM. We
then set p = 4, nNP = 7, nWS = 1, (�L, �H) = (40, 80), and (rL, rH) = (2, 5).
Topic Detection Problem (G1). We employed documents which is collectable by GAPI
[18] asM. We then set p = 4, q = 5, nNP = 7, (�L, �H) = (30, 60), (rL, rH) = (2, 5), and
K = {“sport”, “weather”, “economy”, “meal”}. In fact, we set K in Japanese.

Note that we determine the range of substitution degree (rL, rH) and the minimum
phrase length �L the following reason. Let s be a phrase and ŝ be a phrase to which
the consonant substitution is applied. We assume that adversaries try to restore ŝ to
its original string s and output s′. If s′ = s, adversaries can get several hints of our
problems to query on s′. Therefore, the number of a prospective for s′, that is,

∑rH
i=rL

(
�L
i

)

should be large. In fact, the number of the prospective for s′ is about 1.5 billion under
the condition of �L = 30 and (rL, rH) = (2, 5). It takes about 11 days to find s by
using a computer which can operate at 1.8 million per second. (In fact, it is difficult for
adversaries without the knowledge of s to confirm whether s′ = s or not because several
prospective for s′ may natural but s′ � s.)

Consequently, it is difficult for adversaries to find s by brute-force attacks.
Meanwhile, we determine �H owning to an availability. We suppress the amount of

phrases by �H .

Table 1. Results of our Subjective Experiment

(a) Results of Markov-Chain Phrase Test.

w/o Consonant Substitution w/ Consonant Substitution
Sight Average Accuracy

Rate [%]
Capability [%]
as a Turing Test

Average Accuracy
Rate [%]

Capability [%]
as a Turing Test

Totally Blind 89 86 73 57
Low Vision 78 82 49 41

All 85 83 60 46

(b) Results of Markov-Chain Phrase Test.

w/o Consonant Substitution w/ Consonant Substitution
Sight Average Accuracy

Rate [%]
Capability [%]
as a Turing Test

Average Accuracy
Rate [%]

Capability [%]
as a Turing Test

Totally Blind 71 86 81 100
Low Vision 67 71 60 71

All 69 75 70 79

128 M. Yamaguchi et al.

3.2 Experiment on Test’s Performance for Real Humans

We evaluate four kinds of tests: Markov-chain phrase test with/without consonant sub-
stitution and Topic detection test with/without one. We show our process of the subjec-
tive experiment as follows.

1) Preprocessing. For each AI problem, EvaPro collects phrases from M, analyzes
morphology of them, and generates a corpus.

2) Generate tests. EvaPro generates four kinds of tests. Each one consists of ten AI
problems and includes the alternative answer choices, which consists of four items.
Finally, EvaPro outputs them as a text. Note that this process is completely au-
tomated, that is, we do not modify anything in the text without appending several
explanations.

3) Distribute tests. 24 subjects participate the experiment. Seven subjects of them are
the totally blind, recognize the tests by their auditory sense with a screen reader.
Seventeen subjects are the weak-sighted, recognize them by sight (and hearing,
partly).

4) Check results. The subjects answer the tests without any training. We check them
as follows.

Average accuracy rate. This is an average of the rate how subjects correctly an-
swer every a problem.

Capability as a Turing test. The rate is that subjects correctly answer at least t
times among N problems. In this case, we set that (N, t) = (10, 7).

Note that we determine a threshold t to the following effect. We assume that a verifier
judges a prover as a human by at least t correct answers among N problems. If there
exists an adversary P∗ who solves an AI problem by the probability of P, the success
probability of brute-force attacks to the test by P∗ is

∑N
i=t

(
N
i

)
Pi(1 − P)N−i. Bursztein

et al. [19] claim that a CAPTCHA system is unuseful if there exists an adversary who
solves it by the probability of 1% more than. Hence, we set t = 7 corresponding to
N = 10 and P = 1/p = 0.25.

Results and Discussion. The results appear in Tab. 1. (Data from out previous
work [20].) The rate of Markov-chain phrase test is lower than one of topic detection
test. In my understanding, the reason why differences of naturalness between natural
phrases and word salad becomes small is that phrases with consonant substitution are
more unnatural than without ones. In fact, an influence of the consonant substitution
in Markov-chain phrase test is significant by our statistical test but is not significant in
topic detection test.

To compare our proposal with a conventional system, we also show our results [20]
of experiment for Google’s audio CAPTCHA of the version at November 2013. The
capability as a Turing test was only 7%. Moreover, there were only five among 24
Japanese who can answer correctly at least one in ten challenges.

Consequently, our system is better suited for the visually-impaired.

An Accessible CAPTCHA System for People with Visual Disability 129

3.3 Experiment on Performance against Cracking

We consider adversaries with search engines and generation rate of new phrases.

Attacks Using Search Engines. Straightforward attack is that adversaries convert doc-
uments on the Internet into ones written in hiragana and they seek source documents
of our problems. However, this approach needs vast amounts of memories. Thus, we
employ a typically and easily-implemented attack as follows: suppose that there are
phrases written in hiragana and their consonants are swapped, adversaries repair sev-
eral “mistakes” in the phrases with conventional tools, and convert them into the ones
which includes several kanji-characters.

We show the following experiment as such an attack.

1) Extract 100 natural phrases fromM and swap their consonants in the same manner
as Sec. 2.5.

2) Convert them into sound files with Microsoft Speech Platform 11. They are 48KHz-
16bit mp3 files in stereo.

3) Convert them into text files with Dragon Speech 11, which is software of speech
recognition. Conversion to kanji-characters and restoration are done in this process.

4) For each one, we check whether it includes a source of the corresponding substituted
phrase to less than top ten affairs. If it includes, we consider that adversaries find
the source of the phrase. By checking all the results of the samples, we calculate a
detection rate against attacks by search engines.

Generation Rate of New Phrases. Let Z be a multiple set, whose element is a gener-
ated phrase in each test. We call z ∈ Z new phrase if z′ � Z\z, where z′ = z. For each
test, we generate it 10000 times under the same condition of the subjective experiment,
assign generated phrases to Z, and check they are new phrases or not.

Results and Discussion. Attacks Using Search Engines. The detection rate by Yahoo!
is 9% under the condition of (rL, rH) = (2, 2) and 1% under the condition of (rL, rH)
= (2, 5). In our subjective experiment, the number of choices by a problem is four, thus
the success probability of brute-force attacks is 25%. The four sums of detection rate,
that is 1 × 4%, is lower than this probability. Therefore, an advantage of adversaries
does not increase by such attacks.

Generation Rate of New Phrases. We collected phrases of 1717 lines, 87260 letters,
and 4361 kinds of morphemes in Markov-chain phrase test. Moreover, we collected
phrases of 1209 lines, 109042 letters, and 9726 kinds of morphemes in topic detec-
tion test. The rate of Markov-chain phrase test and topic detection test is 99.94% and
99.65%, respectively.

Each test generated new phrases with a small amount of documents at a high rate.
Therefore, we have only to collect materials for test at any time in case of update. This
means that our system can dispose old phrases and generate new ones.

4 Conclusion

We constructed an accessible CAPTCHA system, which generates two type of AI prob-
lems using the contextual cognition. We showed that our system could differentiate

130 M. Yamaguchi et al.

humans from software agents with high probability compared with conventional
Google’s audio CAPTCHA, generate new phrases as problems without limit by us-
ing phrases on the Internet, and have a tolerant against adversaries by existing search
engines.

References

1. von Ahn, L., Blum, M., Hopper, N.J., Langford, J.: Captcha: Using hard ai problems for
security. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 294–311. Springer,
Heidelberg (2003)

2. Bigham, J.P., Cavender, A.C.: Evaluating existing audio captchas and an interface optimized
for non-visual use. In: CHI 2009, pp. 1829–1838. ACM (2009)

3. Bursztein, E., Bethard, S., Fabry, C., Mitchell, J.C., Jurafsky, D.: How good are humans
at solving captchas? a large scale evaluation. In: SP 2010, pp. 399–413. IEEE Computer
Society (2010)

4. Shirali-Shahreza, S., Shirali-Shahreza, M.H.: Accessibility of captcha methods. In: AISec
2011, pp. 109–110. ACM (2011)

5. Yamaguchi, M.: A generating method of accessible verbal questions with online documents
for substitution of captcha-like tests. Verbal Interface & Interaction 15(4), 337–352 (2013)
(Japanese)

6. Holman, J., Lazar, J., Feng, J.H., D’Arcy, J.: Developing usable captchas for blind users. In:
Assets 2007, pp. 245–246. ACM (2007)

7. Wimmer, H., Perner, J.: Beliefs about beliefs: Representation and constraining function of
wrong beliefs in young children’s understanding of deception. Cognition 13(1), 103 (1983)

8. Dick, P.K.: Do androids dream of electric sheep? (1968)
9. Yamamoto, T., Tygar, J., Nishigaki, M.: Captcha using strangeness in machine translation.

AINA 2010, 430–437 (2010)
10. Kamoshida, Y., Kikuchi, H.: Word salad captcha - application and evaluation of synthesized

sentences. NBIS 12, 799–804 (2012)
11. Miller, G.A., Licklider, J.C.R.: The intelligibility of interrupted speech (1950)
12. Rawlinson, G.: The Significance of Letter Position in Word Recognition. University of Not-

tingham (1976)
13. Saberi, K., Perrott, D.: Cognitive restoration of reversed speech. Nature 398(6730), 760

(1999)
14. Kudo, T.: Mecab: Yet another part-of-speech and morphological analyzer,

http://mecab.sourceforge.net/

15. Kudo, T., Matsumoto, Y.: Japanese dependency analysis using cascaded chunking. In:
CoNLL 2002, pp. 63–69 (2002)

16. Weblio-Thesaurus, http://thesaurus.weblio.jp/
17. Aozora-Bunko, http://www.aozora.gr.jp/
18. GAPI. Net-0.5.0.1, http://gapidotnet.codeplex.com/
19. Bursztein, E., Martin, M., Mitchell, J.: Text-based captcha strengths and weaknesses. In:

CCS 2011, pp. 125–138. ACM (2011)
20. Yamaguchi, M., Okamoto, T.: An evaluation of a captcha for the visually impaired using

questions of context interpretation. National University Corporation Tsukuba University of
Technology Techno Report 21 (2014) (Japanese)

http://mecab.sourceforge.net/
http://thesaurus.weblio.jp/
http://www.aozora.gr.jp/
http://gapidotnet.codeplex.com/

	An Accessible CAPTCHA System for People with Visual Disability –Generation of Human/Computer Distinguish Test
with Documents on the Net
	1 Introduction
	2 Mechanism of Our System
	2.1 Notations
	2.2 Overview of the System
	2.3 Basic Components of the Process
	2.4 Countermeasures against Breaking the Test by Software
	2.5 Detail of Generation of Our CAPTCHA

	3 Experiment
	3.1 Tools and Parameters
	3.2 Experiment on Test’s Performance for Real Humans
	3.3 Experiment on Performance against Cracking

	4 Conclusion
	References

