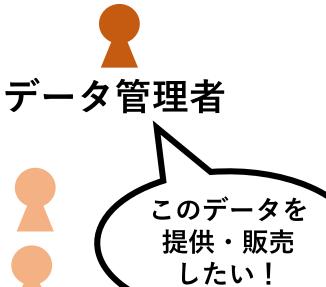
2019年3月5日 第84回CSEC研究発表会

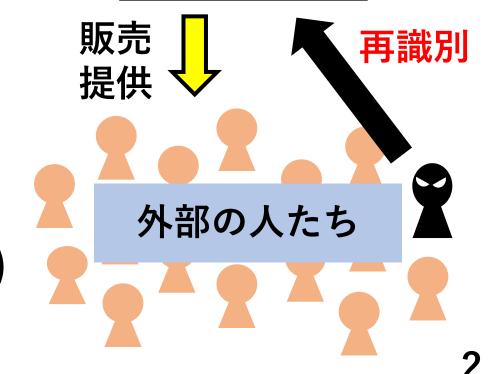
攻撃者の平均識別確率を用いた 匿名加工情報の再識別リスク評価モデルの 提案と評価

伊藤 聡志(明治大学大学院先端数理科学研究科) 菊池 浩明(明治大学総合数理学部)

匿名加工とは?

匿名加工の研究において 攻撃者の想定は大きな課題である





匿名加工 されたデータ

安全

とれかが伊藤

攻撃者と背景知識

明治大学生の試験結果

	ID	数学	英語	物理
	A 90		50	70
	B 90	50	60	
	С	90	70	70
Į	D 50 E 50	70	60	
		50	80	
	F	50	50	10
	G 30	30	70	80
	H 30		70	10

このデータから 伊藤の試験結果を 知りたい!

攻撃者

攻撃者が このデータから 伊藤を識別 できる確率

$$=\frac{1}{8}(12.5\%)$$

背景知識

攻撃者と背景知識

明治大学生の試験結果

ID	数学	英語	物理
Α	90	50	70
В	90	50	60
C	90	70	70
D	50	70	60
Ε	50	50	80
F	50	50	10
G	30	70	80
Н	30	70	10

攻擊者X

伊藤を識別 できる確率

$$=\frac{1}{4}(25\%)$$

伊藤の英語の 点数は 50点である

攻擊者Y

伊藤を識別 できる確率

$$=\frac{1}{2}(50\%)$$

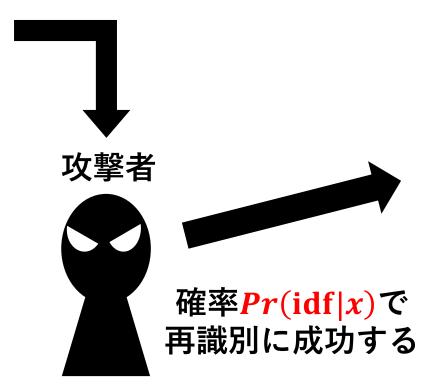
伊藤の物理の 点数は 10点である

本研究について

研究目的

- どんな背景知識を持つ攻撃者が危険なのか?
- データ中のどの属性が危険であるのか?
- 匿名加工の際にどの属性を加工したらよいのか? これらを明らかにする

解決手法


- データのリスク評価を行う理論的なモデルを提案する
- 実際のデータを用いて評価実験を行う

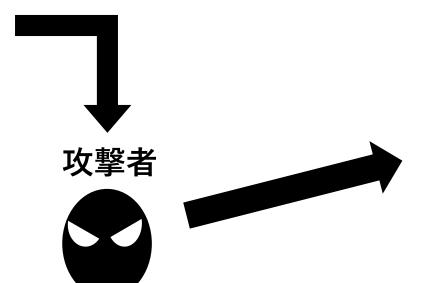
想定するケース

元データ

真名	属性X
伊藤	2019/2/1
伊藤	2019/2/1
山田	2019/2/2
岡本	2019/2/2
岡本	2019/2/3

確率Pr(x)である顧客の属性Xについての背景知識xを得る

仮名化データ


仮名	属性X
Α	2019/2/1
Α	2019/2/1
В	2019/2/2
С	2019/2/2
С	2019/2/3

例:x = "2019/2/2"の場合

元データ

真名	購買日
伊藤	2019/2/1
伊藤	2019/2/1
山田	2019/2/2
岡本	2019/2/2
岡本	2019/2/3

Pr(x) = 2/5の確率で「あるユーザが2019/2/2に買い物をした」という背景知識を得る

仮名化データ

仮名	購買日
Α	2019/2/1
Α	2019/2/1
В	2019/2/2
С	2019/2/2
С	2019/2/3

Pr(idf|x) = 1/2の確率であるユーザの再識別に成功する

例:x = "2019/2/2"の場合

元式

背景知識xの危険度 Pr(idf,x) = Pr(x)Pr(idf|x)

化データ

真名

伊藤

伊藤

山田

岡本

岡本

属性Xの危険度(平均識別確率)

$$\frac{19}{19} \frac{Pr(\mathrm{idf}, X)}{Pr(\mathrm{idf}, X)} = \sum Pr(\mathrm{idf}, x)$$

購買日

2019/2/1

2019/2/1

2019/2/2

2019/2/2

2019/2/3

 $Pr(\operatorname{idf}|x) = 1/2$ の確率であるユーザの再識別に成功する

平均識別確率と平均レコード数 α_x (1)

 α_x : xについての平均レコード数

m: データセットのレコード数

 $\alpha_x = \frac{x$ を満たすレコードの数xを満たすユーザの数

例:購買履歴データ

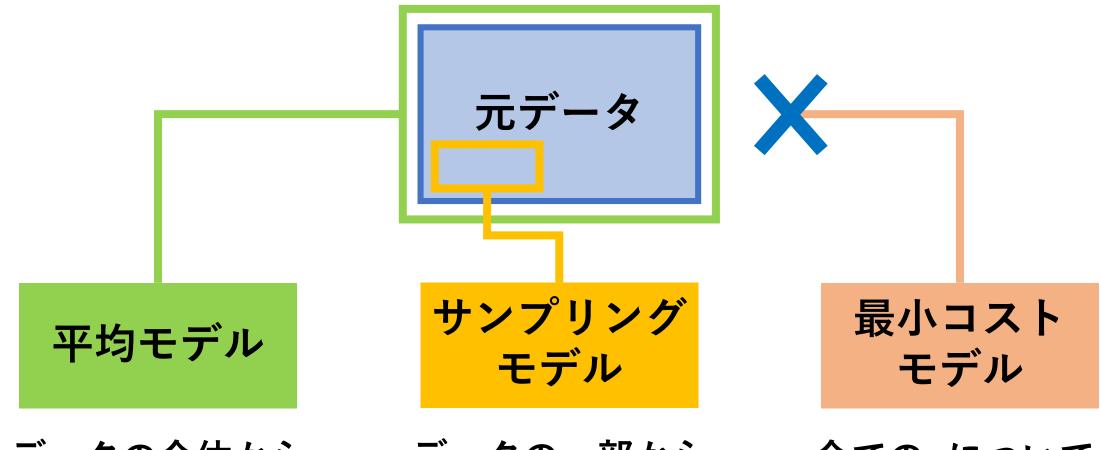
真名	購買日
伊藤	2019/2/1
伊藤	2019/2/1
山田	2019/2/2
岡本	2019/2/2
岡本	2019/2/3

$$x = "2019/2/1"$$
のとき $\alpha_x = \frac{2}{1} = 2$
 $x = "2019/2/2"$ のとき $\alpha_x = \frac{2}{2} = 1$
 $x = "2019/2/3"$ のとき $\alpha_x = \frac{1}{1} = 1$

$$m = 5$$

平均識別確率と平均レコード数 α_x (2)

このとき,平均識別確率は $Pr(\mathrm{idf},X) = \sum \frac{\alpha_x}{m}$ と表せる.


例:購買履歴データ

真名	購買日
伊藤	2019/2/1
伊藤	2019/2/1
山田	2019/2/2
岡本	2019/2/2
岡本	2019/2/3

$$Pr(idf, X) = \sum \frac{\alpha_x}{m} = \frac{2}{5} + \frac{1}{5} + \frac{1}{5} = \frac{4}{5}$$

しかし、ビッグデータについて全ての α_x を計算するのは困難なので、これを近似してリスク評価を行うモデルを提案する.

平均識別確率を近似する3つのモデル

データの全体から α_x の平均値 α_X を求め リスクを計算する

データの一部から α_x の平均値 $\alpha_{x'}$ を求め リスクを計算する

全てのxについて $\alpha_x = 1$ として リスクを計算する

各モデルの式

$$Pr(\mathrm{idf},X) = \sum \frac{\alpha_x}{m}$$

$$R_{\text{mean}}(X) = \sum \frac{\alpha_X}{m}$$

$$R_{cost}(X) = \sum \frac{1}{m}$$

4. サンプリングモデル
$$R_{\text{sample}}(X) = \sum \frac{\alpha_{x'}}{m}$$

$$R_{\text{sample}}(X) = \sum \frac{u_x}{m}$$

評価実験

提案した3つのモデルで以下の3データのリスク評価をした

 T_1 : Online Retail Dataset

英国の1年間の小売データ

T₂: Diabetes Dataset

糖尿病患者の入院履歴データ

各データの大きさ

	レコード数	ユーザ数	属性数
T_1	38,087	400	7
T_2	101,766	71,518	50
T_3	32,561	32,561	16

T₃: Adult Dataset

国勢調査による世帯収入データ

実験には 一部の属性を 用いる

※サンプリングサイズは10※90%信頼区間

データ	属性	真値	平均モデル	最小コストモデル	サンプリングモデル
	購買時刻	0.3217	0.3217	0.0145	[0.1411, 0.5998]
	購買日	0.1860	0.1860	0.0076	[0.1267, 0.2786]
T_1	購買商品	0.0965	0.0965	0.0730	[0.0718, 0.0982]
	価格	0.0121	0.0121	0.0048	[0.0036, 0.0132]
	個数	0.0080	0.0080	0.0025	[0.0017, 0.0152]
	入院日数	1.45E-04	1.45E-04	1.38E-04	[1.46E-04, 1.52E-04]
	年齢	1.33E-04	1.33E-04	9.83E-05	[1.21E-04, 1.42E-04]
T_2	人種	7.73E-05	7.73E-05	5.90E-05	[6.92E-05, 8.31E-05]
	性別	3.78E-05	3.78E-05	2.95E-05	[3.08E-05, 4.30E-05]
	年齢	2.24E-03	2.24E-03	2.24E-03	[2.24E-03, 2.24E-03]
T	職業	4.61E-04	4.61E-04	4.61E-04	[4.61E-04, 4.61E-04]
T_3	婚姻状況	2.15E-04	2.15E-04	2.15E-04	[2.15E-04, 2.15E-04]
	人種	1.54E-04	1.54E-04	1.54E-04	[1.54E-04, 1.54E-04]

※サンプリングサイズは10

※90%信頼区間

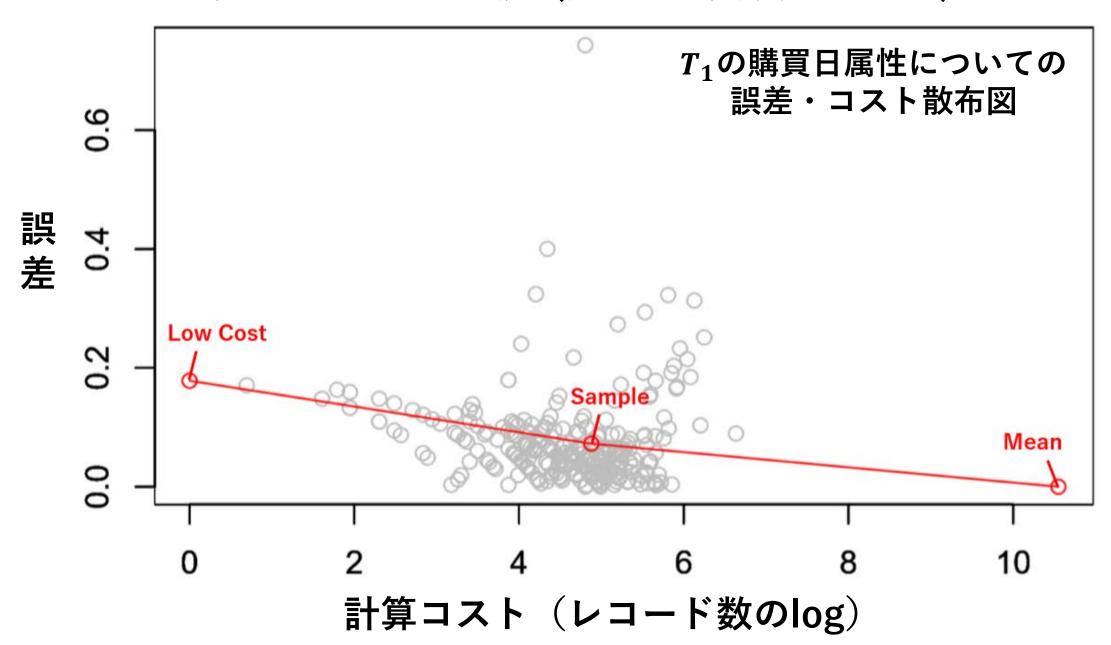
データ	属性	真値	平均モデル	最小コストモデル	サンプリングモデル
	購買時刻	0.3217	0.3217		[0.1411, 0.5998]
	購買日	0.1860	0.1860 📆	占⇒此以及较大。田	いることにより
T_1	購買商品	0.0965	UUMna		
_	価格	0.0121	0.0121	どの属性が危険である	るかを刊断じざる
	個数	0.0080	0.0080	0.0025	[0.0017, 0.0152]
	入院日数	1.45E-04	1.45 .T 1: 其	肯買時刻, T_2 : 人	入院日数,T ₃ :年齡
T	年齢	1.33E-04	1.33E-04	9.83E-05	[1.21E-04, 1.42E-04]
T_2	人種	7.73E-05	7.73E-05	匿名加工を	する際に5,8.31E-05]
	性別	3.78E-05	ع 3 <mark>.78E-05 ک</mark>	の属性を優先	的に加工するか・05
	年齢	2.24E-03	2 .24E-03	決めること	ができる3, 2.24E-03]
T	職業	4.61E-04	4 <mark>.61E-04</mark>		[4.61E-04, 4.61E-04]
T_3	婚姻状況	2.15E-04	2.15E-04	2.15E-04	[2.15E-04, 2.15E-04]
	人種	1.54E-04	1.54E-04	1.54E-04	[1.54E-04, 1.54E-04]

※サンプリングサイズは10

※90%信頼区間

データ	属性	真値	平均モデル	最小コストモデル サンプリングモデル
	購買時刻	0.3217	0.3217	0.0145 [0.1411, 0.5998]
	購買日	0.1860	0.1860	平均モデルの結果は
T_1	購買商品	0.0965	0.0965	0.0730
_	価格	0.0121	0.0121	平均識別確率の真値と一致する
	個数	0.0080	0.0080	0.0025 [0.0017, 0.0152]
	入院日数	1.45E-04	1.45E-04	1.38E-04 α_{x} 1.46 α_{x} 52E-04]
T	年齢	1.33E-04	1.33E-04	9.83E-05 m [1.21 $-$ 04 m .42E-04]
T_2	人種	7.73E-05	7.73E-05	5.90E-05 [6.92E-05, 8.31E-05]
	性別	3.78E-05	3.78E-05	2.95E-05 [3.08E-05, 4.30E-05]
	年齢	2.24E-03	2.24E-03	2.24E-03 [2.24E-03, 2.24E-03]
T	職業	4.61E-04	4.61E-04	4.61E-04 [4.61E-04, 4.61E-04]
T_3	婚姻状況	2.15E-04	2.15E-04	2.15E-04 [2.15E-04, 2.15E-04]
	人種	1.54E-04	1.54E-04	1.54E-04 [1.54E-04, 1.54E-04]

※サンプリングサイズは10※90%信頼区間


データ	属性	真値	平均モデル	最小コストモデル	サンプリングモデル
	購買時刻	0.3217	0.3217	0.0145	[0.1411, 0.5998]
T_1	購買日	0.1860	0.1860	0.0076	[0.1267, 0.2786]
	購買薩平伯	価値はサン	プリングの	0.0730	[0.0718, 0.0982]
	価格 結	果によっ	て変化する	0.0048	[0.0036, 0.0132]
	個数	0.0080	0.0080	0.0025	[0.0017, 0.0152]
7	っではサ	ンプリン・	グサイズ10	のときの	[1.46E-04, 1.52E-04]
T	90%信頼区間を示している				[1.21E-04, 1.42E-04]
	(10レコードではな		7 72	[6.92E-05, 8.31E-05]	
		- 17 C はなる 3 7 E U 1 全 大	2.95E-05	[3.08E-05, 4.30E-05]	
	データの一部しか用いていないが 属性の危険度を精度よく評価できる			[2.24E-03, 2.24E-03]	
				[4.61E-04, 4.61E-04]	
13	禹性の危	陝度を精	受よく 評価	でき25E-04	[2.15E-04, 2.15E-04]
	人種	1.54E-04	1.54E-04	1.54E-04	[1.54E-04, 1.54E-04]

※サンプリングサイズは10

※90%信頼区間

データ	属性	真値	平均モデル	最小コストモデル		サンプリングモデル
T_1	購買時刻	0.3217	0.3217	0.0145		[0.1411, 0.5998]
	購買日	0.1860	0.1860	0.0076	ı	データによっては
	購買商品	0.0965	0.0965	0.0730	耳	曼小コストモデルでも
	価格	0.0121	0.0121	0.0048		属性の危険度を
	個数	0.0080	0.0080	0.0025		精度よく評価できる
T_2	入院日数	1.45E-04	1.45E-04	1.38E-04		[1.46E-04, 1.52E-04]
	年齢	1.33E-04	1.33E-04	9.83E-05		[1.21E-04, 1.42E-04]
	人種	7.73E-05	7.73E-05	5.90E-05		[6.92E-05, 8.31E-05]
	性別	3.78E-05	3.78E-05	2.95E-05		[3.08E-05, 4.30E-05]
T ₃	年齢	2.24E-03	2.24E-03	2.24E-03		[2.24E-03, 2.24E-03]
	職業	4.61E-04	4.61E-04	4.61E-04		[4.61E-04, 4.61E-04]
	婚姻状況	2.15E-04	2.15E-04	2.15E-04		[2.15E-04, 2.15E-04]
	人種	1.54E-04	1.54E-04	1.54E-04		[1.54E-04, 1.54E-04]

各モデルの比較(誤差・計算コスト)

まとめ

- 匿名加工の研究には攻撃者の想定が不可欠である
- 元データのある属性から背景知識を得る攻撃者を想定し、それらの 危険度の期待値(平均識別確率)を用いたリスク評価モデルを提案した
- ・提案したモデルを用いて3つの実データを評価し、 データ中の危険な属性を明らかにした

平均識別確率を近似する3つのモデルを提案し、 それらの精度とコストを評価した

質疑応答用スライド

平均識別確率と α_x

 R_x : xを満たすレコードの集合, U_x : xを満たすユーザの集合

m: データのレコード数, D_X : 属性Xの値の集合, $\omega_X = |D_X|$

属性 X の背景知識 x について, $\frac{|R_x|}{|U_x|}=lpha_x$ とおくと,平均識別確率は

$$Pr(\mathrm{idf},X) = \sum_{x \in D_X} Pr(x) Pr(\mathrm{idf}|x) = \sum_{x \in D_X} \frac{|R_x|}{m} \frac{1}{|U_x|} = \sum_{x \in D_X} \frac{\alpha_x}{m}$$

と求めることができる.

しかし、ビッグデータについて全ての α_x を計算するのは困難なので、 これを近似してリスク評価を行うモデルを提案する。

3つの近似モデル

1. 平均モデル

$$R_{\text{mean}}(X) = \sum_{x \in D_Y} \frac{\alpha_X}{m} = \frac{\alpha_X \omega_X}{m}$$

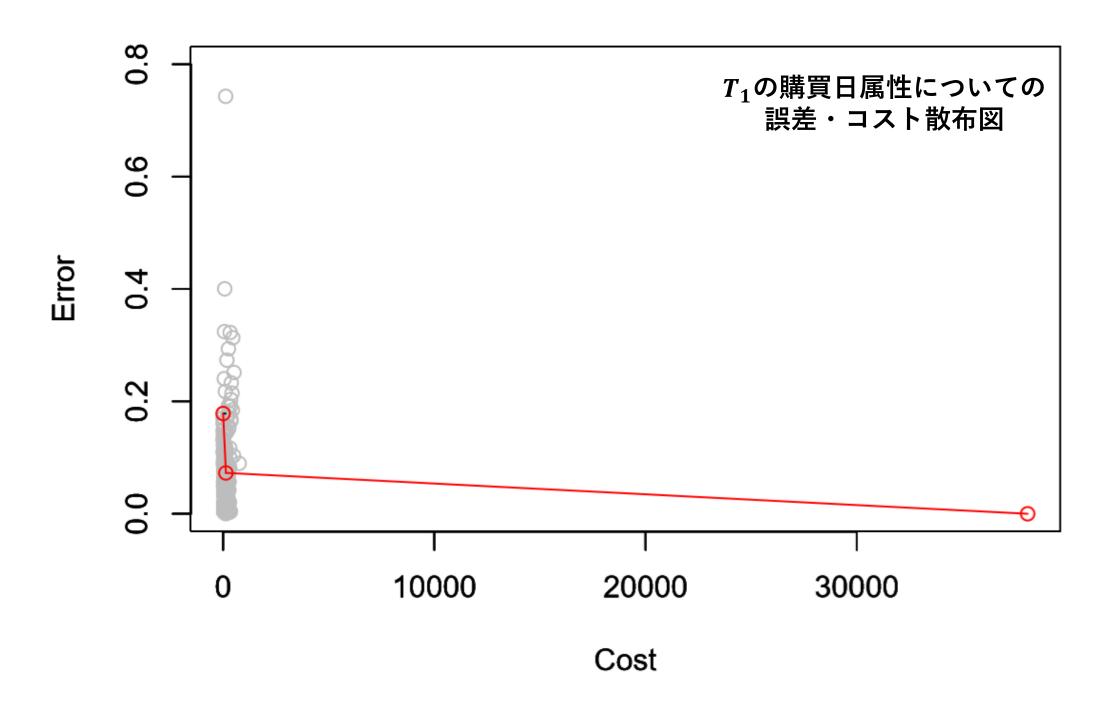
2. 最小コストモデル

$$R_{cost}(X) = \sum_{x \in D_X} \frac{1}{m} = \frac{\omega_X}{m}$$

3. サンプリングモデル

$$R_{sample}(X) = \sum_{x \in D_X} \frac{\alpha_{x'}}{m} = \frac{\alpha_{x'} \omega_X}{m}$$

各データの概要・Pr(idf, X)


各データの大きさ

	m	n	#Attribute
T_1	38,087	400	7
T_2	101,766	71,518	50
T_3	32,561	32,561	16

データ・属性によって α_X の値は大きく異なる

各属性の分析

T	X	α_X	ω_X	$Pr(\mathrm{idf},X)$	σ
T_1	Date	24.42	290	0.186	0.140
	Time	22.23	551	0.322	0.228
	Goods	1.32	2781	0.097	0.151
	Price	2.49	184	0.012	0.066
	Number	3.15	97	0.008	0.043
$\overline{T_2}$	Race	1.31	6	$7.73 \cdot 10^{-5}$	$2.08 \cdot 10^{-4}$
	Gender	1.28	3	$3.78 \cdot 10^{-5}$	$1.81 \cdot 10^{-3}$
	Age	1.35	10	$1.33 \cdot 10^{-4}$	$3.20 \cdot 10^{-4}$
	Time	1.05	14	$1.45 \cdot 10^{-4}$	$1.66 \cdot 10^{-4}$
T_3	Age	1	73	$2.24 \cdot 10^{-3}$	$1.01 \cdot 10^{-2}$
	Martial	1	7	$2.15 \cdot 10^{-4}$	$1.20 \cdot 10^{-3}$
	Occupation	1	15	$4.61 \cdot 10^{-4}$	$1.21 \cdot 10^{-3}$
	Race	1	5	$1.54 \cdot 10^{-4}$	$4.79 \cdot 10^{-4}$
			_		

