一般化匿名加工された購買履歴 データのRFM分析有用性評価

明治大学

小林祐貴 中村幸輝 伊藤聡志 菊池浩明

研究背景（匿名加工とは）
－近年パーソナルデータ利活用による匿名加工の必要性
匿名加エ：データから個人を特定されないようにデータを加エすること

PWSCUPとその問題点

- 匿名加エ・再識別コンテストPWSCUP
- 匿名加工データの優れた加工手法や評価指標を明らかにするコンテスト
- 2018年は「一般化」手法がテーマ。
- 匿名加工データの有用性と安全性を評価するコンテスト

元データ					一般化匿名加エデータ					
顧客	購買日	商品ID	単価	購買数量	一般化	顧客ID	購買日	商品ID	単価	購買数量
小林	11／14	A	1	1		1	［11／2，4／6］	\｛A，B，C $\}$	［1，3］	［1，10］
中村	11／2	B	2	2		2	［11／2，4／6］	$\{A, B, C\}$	［1，3］	［1，10］

－問題点
1．PWSCUP2018では特定のユースケースに対する有用性は不確か
PWSCUPは元データと加エデータの平均誤差で有用性評価
2．$k=2$ の匿名加エデータが主流で $k \geq 3$ の匿名加エデータに対する評価が不十分
k－匿名化：同一のレコードがk件以上になるように匿名加工を行うことで再識別される確率を 1／kにする

1．RFM分析の観点からユースケースを検討
2．$k=3,4$ のプログラムを開発し，その安全性と有用性を評価する

購買履歴データのRFM分析

－2010年から1年間の英国のオンライン小売店における購買履歴データ 1000人分を使用

- RFM分析
- R（Recency）：最新購買日

2011／12／31（最新日）から何日前か
－F（Frequency）：購買頻度
1日に何度も購買していても1回とカウント
－M（Monetary）：購買金額（ポンド）
年間の購買総額

購買履歴データ

顧客ID	購買日	商品	単価	購買数量				
12348	11／14	A	3.7	，	顧客ID	R	F	M
12513	11／2	B	2.0	2	12348	66	30	23540
12678	4／6	C	0.6	10	12513	9	2	145.2
12678	4／6	D	2.0	5	12678	260	2	5041.56

最新購買日（R）と購買頻度（F）の散布図

顧客ID	R	F
12348	66	30
12513	9	2
12678	260	2

－R，F，Mをそれぞれ10分位値 でクラスタリング

離反客
（12678）

年間購買総額（M）と購買頻度（F）の散布図

購買履歴データのユースケース・有用性評価

－ユースケース

- RFMをクラスタリングすることで顧客の性質•分布を知ることができる
- 有用性評価
- 元データと匿名加エデータで顧客のクラスタが一致した数の割合

－R，F，M一次元の有用性，RFM三次元の有用性を評価する

匿名加工データのRFM

－匿名加エデータのRFMを計算するために特定の値が必要

顧客ID	購買日	単価	購買数量					
23	$[11 / 2,11 / 14]$	$[2,3.7]$	$[1,2]$	\quad	䫀客ID	R	F	M
:---:	:---:	:---:	:---:					
23	$?$	$?$	$?$					

－区間からランダムにn回選んだ値の平均値でRFMを計算（本研究は $\mathrm{n}=100$ ）
－例： $\mathrm{n}=3$ で $[11 / 2,11 / 14]$ に一般化されている場合

平均は $11 / 6$

評価実験•使用する匿名加エデータ

- PWSCUP2018における加工手法
- 仮名化：顧客IDを変更すること

－一般化：要素を区間や集合へ変更
元データ

顧客ID	購買日	商品ID	単価	購買数量
12348	$11 / 14$	21	3.7	1
12513	$11 / 2$	23	2	2
12556	$11 / 10$	24	3	1

匿名加エデータ

仮名ID	購買日	商品ID	単価	購買数量
23	$[11 / 2,11 / 14]$	$*$	$[2,3.7]$	$[1,2]$
40	$[11 / 2,11 / 14]$	$*$	$[2,3.7]$	$[1,2]$
13	$[11 / 2,11 / 14]$	$*$	$[2,3.7]$	$[1,2]$

- k－匿名化を行う
- 同一のレコードがk件以上になるように匿名加工を行うことで再識別される確率を1／kにする
- 本実験では $k=2,3,4$ の匿名加エデータを使用する
- 安全性評価は平均再識別率 $1 / k$ とする

k－匿名化のアルゴリズム

－ $\mathrm{k}=3$ の例

顧客ID	レコード数	クラスタ番号	削除レコード数
6	1500	1	500
100	1200	1	200
30	1000	1	0
44	800	2	600
56	500	2	300
62	200	2	0
\vdots	\vdots	\vdots	\vdots

1． 1000 人の顧客をレコード数順に ソートする
2．レコード数上位の顧客から3人ずつ マッチング
3．レコード数を合わせるためレコー ド削除を行う

仮名ID	購買日	商品ID	単価	購買数量
23	$[11 / 2,11 / 14]$	$*$	$[2,3.7]$	$[1,2]$
40	$[11 / 2,11 / 14]$	$*$	$[2,3.7]$	$[1,2]$
13	$[11 / 2,11 / 14]$	$*$	$[2,3.7]$	$[1,2]$

結果1：有用性と安全性の関係

\boldsymbol{k}	有用性（R）	有用性（F）	有用性（M）	有用性（RFM）	安全性	PWSCUP有用性評価 （誤差の大きさ）
$\mathbf{2}$	0.270	0.463	0.352	0.097	0.5	0.35
3	0.214	0.343	0.301	0.040	0.33	0.47
4	0.155	0.287	0.288	0.026	0.25	0.54

- kの値が大きくなるほど有用性が下降，安全性が上昇
- R，F，Mの有用性は約 3 割減少
- RFMの有用性は1割以下に減少
- Rの有用性がFやMと比べて低い

平均117日の区間から任意の値を選んでいるため

購買日
［8／2，11／14］
［6／10，11／14］

結果2：RFMの独立性について

－R，F，M は独立ではない

R，F，Mの積よりもRFMの有用性が高いから

k	有用性（R）	有用性（ F ）	有用性 (M)	$\mathrm{R}^{*} \mathrm{~F}^{*} \mathrm{M}$	期待値
2	0.270	0.463	0.352	0.044	44 人

k	有用性（RFM）	人数
2	0.097	97 人

－$k=2$ の時
1000人
270人
125人
44人
（Rが同じクラスタの人数）（RFが同じクラスタの人数）（RFMが同じクラスタの人数）

まとめ

- RFM分析から購買履歴データのユースケースを検討した
- 一般化匿名加工データにおける有用性評価指標を提案した
- 匿名加工することにより有用性は下降し安全性は上昇した
- R，F，Mの有用性は約 3 割減少
- RFMの有用性は1割以下に減少
- R，F，M は独立ではないことがわかった

年間購買総額（M）と累積購買金額比率

安全性評価

- $k=n$ の時の平均再識別率で評価
- $k=3$ の時

仮名ID	購買日	商品ID	単価	購買数量
23	$[11 / 2,11 / 14]$	$\{21,23\}$	$[2,3.7$	$[1,2]$
40	$[11 / 2,11 / 14]$	$\{21,23\}$	$[2,3.7]$	$[1,2]$
32	$[11 / 2,11 / 14]$	$\{21,23\}$	$[2,3.7]$	$[1,2]$

3人中 3 人が識別される確率 $\rightarrow 1 / 6$

3 人中 2 人が識別される確率 $\rightarrow 0$
3 人中 1 人が識別される確率 $\rightarrow 1 / 2$
 3 人中 0 人が識別される確率 $\rightarrow 1 / 3$平均再識別率は $1 / 3$
 3人中0人が識放される確率 $\rightarrow 1 / 3$ ，
－$k=2,3,4$ の時は何も $1 / k$ となった

