

明治大学 小林祐貴 中村幸輝 伊藤聡志 菊池浩明

研究背景 (匿名加工とは)

・近年パーソナルデータ利活用による匿名加工の必要性
 匿名加工:データから個人を特定されないようにデータを加工すること

PWSCUPとその問題点

・匿名加工・再識別コンテストPWSCUP

- ・ 匿名加工データの優れた加工手法や評価指標を明らかにするコンテスト
- 2018年は「一般化」手法がテーマ。
- 匿名加工データの有用性と安全性を評価するコンテスト

• 問題点

1. PWSCUP2018では特定のユースケースに対する有用性は不確か

PWSCUPは元データと加工データの平均誤差で有用性評価

2. k=2の匿名加工データが主流でk≥3の匿名加工データに対する評価が不十分

k-匿名化:同一のレコードが*k*件以上になるように匿名加工を行うことで再識別される確率を 1/kにする

1. RFM分析の観点からユースケースを検討

2. k=3,4のプログラムを開発し、その安全性と有用性を評価する

購買履歴データのRFM分析

- 2010年から1年間の英国のオンライン小売店における購買履歴データ 1000人分を使用
- ・RFM分析
 - R(Recency):最新購買日
 2011/12/31(最新日)から何日前か
 - F(Frequency):購買頻度
 1日に何度も購買していても1回とカウント
 - M(Monetary):購買金額(ポンド)
 年間の購買総額

	將貝/	复定丿						
頁客ID	購買日	商品	単価	購買数量	· · · · · ·			
2348	11/14	Α	3.7	1	顧客ID	R	F	M
2513	11/2	В	2.0	2	12348	66	30	23540
2678	4/6	С	0.6	10	12513	9	2	145.2
2678	4/6	D	2.0	5	12678	260	2	5041.50

瞱	晋	屑	柸	デ	 4
片中,		NБ	LiF.		

最新購買日(R)と購買頻度(F)の散布図

顧客ID	R	F
12348	66	30
12513	9	2
12678	260	2

R,F,Mをそれぞれ10分位値
 でクラスタリング

離反客

(12678)

年間購買総額(M)と購買頻度(F)の散布図

Μ

23540

145.2

5041.56

7

F

30

2

2

購買履歴データのユースケース・有用性評価

- ・ユースケース
 - RFMをクラスタリングすることで顧客の性質・分布を知ることができる
- ・有用性評価
 - ・元データと匿名加工データで顧客のクラスタが一致した数の割合

• R,F,M一次元の有用性、RFM三次元の有用性を評価する

匿名加エデータのRFM

• 匿名加工データのRFMを計算するために特定の値が必要

顧客ID	購買日	単価	購買数量	顧客ID	R	F	Μ
23	[11/2,11/14]	[2,3.7]	[1,2]	23	?	?	?

- 区間からランダムにn回選んだ値の平均値でRFMを計算(本研究は n=100)
 - 例:n=3で[11/2,11/14]に一般化されている場合

評価実験・使用する匿名加エデータ

- PWSCUP2018における加工手法
 - 仮名化:顧客IDを変更すること
 - 削除:データの要素を削除し、削除を表す*に変更する
 - 一般化:要素を区間や集合へ変更

匿名加エデータ

顧客ID	購買日	商品ID	単価	購買数量	仮名ID	購買日	商品ID	単価	購買数量
12348	11/14	21	3.7	1	23	[11/2,11/14]	*	[2,3.7]	[1,2]
12513	11/2	23	2	2	40	[11/2,11/14]	*	[2,3.7]	[1,2]
12556	11/10	24	3	1	13	[11/2,11/14]	*	[2,3.7]	[1,2]

- k-匿名化を行う
 - 同一のレコードがk件以上になるように匿名加工を行うことで再識別される確率を1/kにする
 - 本実験では*k=2,3,4*の匿名加工データを使用する
- 安全性評価は平均再識別率1/kとする

k-匿名化のアルゴリズム

• k=3の例

顧客ID	レコード数	クラスタ番号	削除レコード数	
6	1500	1	500	
100	1200	1	200	
	1000			
44	800	2	600 300	
62	200	2	0	
:	i	:	:	

- 1.1000人の顧客をレコード数順に ソートする
- 2. レコード数上位の顧客から3人ずつ マッチング
- 3. レコード数を合わせるためレコー ド削除を行う

仮名ID	購買日	商品ID	単価	購買数量
23	[11/2,11/14]	*	[2,3.7]	[1,2]
40	[11/2,11/14]	*	[2,3.7]	[1,2]
13	[11/2,11/14]	*	[2,3.7]	[1,2]

結果1:有用性と安全性の関係

k	有用性(R)	有用性(F)	有用性(M)	有用性(RFM)	安全性	PWSCUP有用性評価 (誤差の大きさ)
2	0.270	0.463	0.352	0.097	0.5	0.35
3	0.214	0.343	0.301	0.040	0.33	0.47
4	0.155	0.287	0.288	0.026	0.25	0.54

- ・kの値が大きくなるほど有用性が下降、安全性が上昇
 - R,F,Mの有用性は約3割減少
 - RFMの有用性は1割以下に減少
- ・Rの有用性がFやMと比べて低い
 平均117日の区間から任意の値を選んでいるため

結果2:RFMの独立性について

R,F,M は独立ではない R,F,Mの積よりもRFMの有用性が高いから

k	有用性(R)	有用性(F)	有用性(M)	R*F*M	期待値
2	0.270	0.463	0.352	0.044	44人

k	有用性(RFM)	人数
2	0.097	97人

• k=2の時

まとめ

- RFM分析から購買履歴データのユースケースを検討した
- 一般化匿名加工データにおける有用性評価指標を提案した
- 匿名加工することにより有用性は下降し安全性は上昇した
 - R,F,Mの有用性は約3割減少
 - RFMの有用性は1割以下に減少
- R,F,Mは独立ではないことがわかった

年間購買総額(M)と累積購買金額比率

0 0

- *k*=nの時の平均再識別率で評価
- *k*=3の時

0 0

仮名ID	購買日	商品ID	単価	購買数量
23	[11/2,11/14]	{21,23}	[2,3.7]	[1,2]
40	[11/2,11/14]	{21,23}	[2,3.7]	[1,2]
32	[11/2,11/14]	{21,23}	[2,3.7]	[1,2]

平均再識別率は1/3

- 3人中3人が識別される確率→1/6
 - 3人中2人が識別される確率→0
 - 3人中1人が識別される確率→¹/₂
- ○
 ○
 3人中0人が識別される確率→¹/₃
- *k*=2,3,4の時は何も¹/_kとなった