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Abstract De-identification is a process to prevent in-

dividuals from being identified from original transac-

tion data by processing personal identification infor-

mation. For de-identifying data, we should consider the

risk of attackers that try to infer personal information

from given de-identified datasets. However, the char-

acteristics of attackers are not known. Attackers could

find the weakest records to identify the user who owns

them. In the case of big data, there are too many at-

tributes to identify the weakest parts to be protected.

To address these issues, we propose a new model of

attackers that gain background knowledge from an at-

tribute of the transaction data and estimate the risk of

re-identification from the statistics of the dataset, such

as the number of records and the background number

of users. We present empirical results on evaluating the

risks of actual transaction data using our proposed risk

model.
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1 Introduction

De-identification is a process to prevent individuals from

being identified from original transaction data by pro-

cessing personal identifying information (PII). Compa-

nies are required to assess the re-identification risks

when employing big data extensively in their businesses.

However, there is concern that attackers may try to re-

identify individuals from available de-identified data us-

ing external background knowledge. For example, when

an attacker tries to re-identify a user from purchase

history data, he/she may use the background knowl-

edges about attribute, e.g., the target user’s age, sex,

and ethnicity. It is unclear what kinds of background

knowledge are available to these attackers. In addition,

attackers may try to find the least protected records

in published data in an effort at re-identification. For

example, a unique record might be identified when it

contains information about an unusual disease that a

particular patient suffers. However, there are too many

attributes and records to alter to reduce the risk of dis-

closure. It is not trivial to determine which attributes

of the original data need to be processed to de-identify

the data against attackers.

In order to determine the risky attributes to be pro-

cessed, Domingo-Ferrer et al. proposed a model of a

maximum-knowledge attacker who knows all original

attribute values for all subjects (Domingo-Ferrer et al.,

2015). In this attacker model, the attacker is supposed

to know both the original and the de-identified datasets.

So, it models a worst-case attacker who has all the

background information he can possibly use. Therefore,

this model has been adopted in much research, such as

in the data anonymization competition, Privacy Work-

shop Cup (PWS CUP) (Kikuchi et al., 2016). In this

model, the attacker can use all attributes as background
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knowledge to estimate the most likely linkages. How-

ever, this assumption is too strong to model a realistic
environment and we relax the assumptions to make the

attacker model more realistic.

El Emam studied the four realistic attacker models,

“Intentional Attack”, “Unintentional Attack”, “Data

Breach”, and “Open Data Attack” (Emam and Ar-

buckle, 2013). These models need objective data, such

as the probability of being attacked and the probability

of a data breach occurring. However, it is well known

that there is no universal attacker model because the

impact differs from case to case. For example, the im-

pact of disclosure of a cancer patient is more serious

than that of a purchase from a convenience store.

In this paper, we study new model of risk of attack-

ers depending on their background knowledge and esti-

mate such risk for transaction data. Instead of assuming

a universal model, we consider a specific attacker that

gains background knowledge from an attribute of the

transaction data with probability determined by statis-

tics of the dataset, such as the number of records and

the number of users who have the background knowl-

edge. We consider not only the worst-case attacker, but

also wide range of attackers with different background

knowledge. In the worst-case of maximum knowledge

attacker, the risk of disclosure is possibly overestimated

since such a strong attacker is far from reality. We pro-

pose models to approximate the risk of re-identification

of de-identified data as the expected value of the identi-

fication probability of the attacker with particular back-

ground knowledge, “the mean identification probabil-

ity”.

One of the drawbacks of the mean identification

probability is its computational cost to evaluate. The

processing time to examine all records of the dataset

is proportional to the number of records, which could

be huge. In addition, the cost depends of the number

of attributes of the dataset. To address the cost is-
sue, we propose three approximation methods, called

the mean model, the low-cost model and the sampling

model. There is a trade-off between the accuracy and

the efficiency for the models and should be chosen based

on the requirement of use case.

To show that our proposed method can be applied

to a wide range of datasets, we present empirical results

on evaluating the risks of the typical actual transaction

data in our proposed risk model. In the experiments, we

investigate four datasets, the purchase history, the hos-

pitalization data for disease, the census income dataset,

and the loan data, with distinct characteristics, e.g.,

the ratio of number of records and the number of users

varies with the four datasets.

Our study makes three contributions: (1) we pro-

pose a new model of attacker and risk of data; (2) we

propose three methods to approximate the measure of

the risk of data; and (3) we make an empirical evalu-

ation of actual transaction data by applying our risk

model.

The remainder of the paper is organized as follows.

In Section 2, we consider the models of datasets and

attackers. In Section 3, we propose a theoretical risk

model. Section 4 evaluates the risks of the actual trans-

action data by applying our risk model. Section 5 de-

scribes related work, and Section 6 concludes the paper.

2 The Dataset and Attacker Models

2.1 Dataset Model

We consider transaction data that consist of records

(rows) and attributes (columns) and have an attribute

that identifies individuals. We define our model as fol-

lows.

Definition 1 Let T be a set of transaction data. Let

m and n be the number of records and the number of

users in transaction data T , respectively. Let DX be

the set of values for attribute X of T . Let Rx and Ux

be the set of records containing a given x ∈ DX and

the set of users that have x in attribute X, respectively.

Let T ′ be a pseudonymised transaction data T such that

replacing the identifiers (like user IDs) of T with unique

characters chosen at random as pseudo IDs.

Example 1 As an example of T , Table 1 shows pur-

chase transaction data TExample of three users (1, 2, 3)

for three days (2010/12/1 − 2010/12/3). For example,

we can find that user 2 purchased three loaves of bread

on 2010/12/1 from these data. In the case of TExample,

m is 10 and n is 3 and when X is date, DX is {2010/12/
1, 2010/12/2, 2010/12/3} and |DX | is 3. When x is 2010/

12/1, Rx is {1, 2, 3, 4} and Ux is {1, 2}. Table 2 shows a

processed purchase transaction data T ′
Example. The val-

ues 1, 2, and 3 of user ID attributes of T are replaced

with A, B, and C.

2.2 Attacker Model

We consider an attacker that accidentally gains back-

ground knowledge x of attributeX, which helps to iden-

tify users (specified in T ). In this paper, we assume

that the probability of gaining background knowledge

x for the attacker is proportional to the frequency of

the records that contain x in transaction data. For ex-

ample, when an attacker observe customer purchasing
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in front of supermarket, the records that frequently oc-

cur like “a customer purchased in 13:00” are likely to be
available to attacker as background knowledge than the

records that rarely occur like “a customer purchased in

2:00 midnight”.

Definition 2 The probability Pr(x) of gaining back-

ground knowledge x for the attacker is proportional to

the frequency of x in T , i.e., Pr(x) = |Rx|/m.

The attacker that has processed data T ′ gains Ux

as candidate users when he/she can access records that

contain x of T as background knowledge. Therefore, we

define the risk of re-identification denoted as ‘idf’ as a

conditional probability of given x.

Definition 3 An attacker identifies (idf) individual from

side knowledge x of T , with a conditional probability

given x, that is, Pr(idf|x) = 1/|Ux|.

Based on the definitions, 2 and 3, a joint probabil-

ity Pr(idf, x) to gain background knowledge x for the

attacker and to identify the individual is calculated as

Pr(idf, x) = Pr(x)Pr(idf|x) = |Rx|
m

1

|Ux|
.

Letting αx = |Rx|/|Ux|, we rewrite it as

Pr(idf, x) =
αx

m
,

where αx is the mean number of records for user that

has x. Since αx is very important for calculating and

approximating risk, we define this as follows.

Definition 4 Let αx be the mean number of records

for user about background knowledge x of attribute X.

Let αX be the mean of αx for attribute X, i.e., αX =
1

|DX |
∑

x∈DX
αx.

Example 2 Table 3 shows |Rx|, Pr(x), |Ux|, Pr(idf|x),
Pr(idf, x) for the background knowledge x in three days

in case of TExample and X is date. In this case, DX is
{2010/12/1, 2010/12/2, 2010/12/3}. When x is 2010/12/3,

Pr(x) is 3/10 because Rx is {8, 9, 10} and m is 10.

The probability of gaining background knowledge is 3/m

in all cases (before/after anonymization) because the

attacker always gains background knowledge from the

original transaction data. Pr(idf|x) is 1/1 because Ux

is {3}. The attacker identifies a user u from x with the

probability of

Pr(idf, x) = Pr(x)Pr(idf|x) = 0.3 · 1 = 0.3

Also, because αx = 3/1 = 3, simply we have

Pr(idf, x) =
αx

m
=

3

10
= 0.3.

Table 1 Example Purchase Data TExample

ID user ID date time goods price number
1 1 2010/12/1 8:45 Bread 1.45 2
2 1 2010/12/1 8:45 Book 3.75 1
3 1 2010/12/1 20:10 Tea 0.85 2
4 2 2010/12/1 10:03 Bread 1.45 3
5 1 2010/12/2 15:07 Tea 0.85 3
6 3 2010/12/2 11:57 Bread 1.45 4
7 3 2010/12/2 11:57 Juice 1.25 4
8 3 2010/12/3 15:54 Book 3.75 1
9 3 2010/12/3 15:54 Tea 0.85 10
10 3 2010/12/3 15:54 Juice 1.45 10

Regardless of how the dataset is anonymized, our pro-

posed methods allow to model how risk is reduced based

on the number of risky records and chance for attacker

to have the knowledge on the target attribute.

Definition 5 (Mean Identification Probability) The mean

identification probability is a probability of individual to

be identified by the attacker who has all x of X as back-

ground knowledge, denoted by

Pr(idf, X) =
∑

x∈DX

Pr(x)Pr(idf|x) =
∑

x∈DX

Pr(idf, x).

Example 3 In case of TExample, the identification prob-

abilities of 4 records that contain “2010/12/1” are

Pr(idf|x) = 1/2 and those of 3 records that contain

“2010/12/2” are Pr(idf|x) = 1/2 and those of 3 records

that contain “2010/12/3” are Pr(idf|x) = 1. So, the

mean of Pr(idf|x) is Pr(idf, X) = 13/20.

Based on Definition 4 and 5, we have that

Pr(idf, X) =
∑

x∈DX

Pr(idf, x) =
∑

x∈DX

αx

m
.

Example 4 Given TExample and X of date, we cal-

culate the mean identification probability Pr(idf, X) is

calculated as

Pr(idf, X) =
∑

x∈DX

αx

m
=

2 + 1.5 + 3

10
= 0.65.

This means that the attacker who has background knowl-

edge of the date attribute identifies u from TExample

with the mean probability of 0.65.

In this paper, we regard the mean identification

probability, Pr(idf, X), as the risk of an attribute X.

We observe that the cost of calculation of risk is pro-

portional to the number of records to calculate the risk.
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Table 2 Processed Example Purchase Data T ′
Example

ID pseudo ID date time goods price number
1 A 2010/12/1 8:45 Bread 1.45 2
2 A 2010/12/1 8:45 Book 3.75 1
3 A 2010/12/1 20:10 Tea 0.85 2
4 B 2010/12/1 10:03 Bread 1.45 3
5 A 2010/12/2 15:07 Tea 0.85 3
6 C 2010/12/2 11:57 Bread 1.45 4
7 C 2010/12/2 11:57 Juice 1.25 4
8 C 2010/12/3 15:54 Book 3.75 1
9 C 2010/12/3 15:54 Tea 0.85 10
10 C 2010/12/3 15:54 Juice 1.45 10

Table 3 Identification Probability about date Attribute of
TExample

x |Rx| Pr(x) |Ux| Pr(idf|x) Pr(idf, x) αx

2010/12/1 4 0.4 2 0.5 0.2 2
2010/12/2 3 0.3 2 0.5 0.15 1.5
2010/12/3 3 0.3 1 1 0.3 3

Sum 10 1.0 0.65

3 Risk of the Attribute of Transaction Data

We have to calculate αx for all x of X to calculate

the mean identification probability based on Definition

5. However, examining all αx for a big dataset is not

efficient. So, we consider three alternative methods to

approximate it as follows:

1. The mean model,

2. The low-cost model, and
3. The sampling model.

3.1 The Exact Solution

The risk of re-identification of T ′ depends on the back-

ground knowledge attribute X that the attacker has.

Therefore, we define the risk of re-identification R(X)

as the mean identification probability ofX, i.e.,R(X) =

Pr(idf, X). We have to calculate αx for all x of X to

calculate the exact solution of R(X) so the calculating

cost is m, in this case.

3.2 The Mean Model

The mean model calculates a risk of attribute X with

the mean of αx.

Definition 6 Let Rmean(X) be the risk of attribute X

in the mean model defined as

Rmean(X) =
αX |DX |

m
.

It is interesting that the risk calculated by the mean

model gives the exact solution as follows.

The risk of X in the mean model is Rmean(X) =

Pr(idf, X). Based on Definition 6, Rmean(X) is calcu-
lated as Rmean(X) = αX |DX |/m. Based on Definition

4, αX is calculated as αX = 1
|DX |

∑
x∈DX

αx. Therefore,

Rmean(X) is transformed as follows.

Rmean(X) =
αX |DX |

m

=
|DX |
m

∑
x∈DX

αx

|DX |

=
∑

x∈DX

αx

m

=
∑

x∈DX

Pr(x)Pr(idf|x)

= Pr(idf, X)

Example 5 When T = Texample and X = date, we

have that

Pr(identify, X) =
αX |DX |

m
=

13
6 · 3
10

= 0.65

Unfortunately, we have to calculate αx for all x of

X to calculate αX , so the calculating cost is m, in this

model.

3.3 The Low-cost model

Based on our experiments in Section 4, we observed

that the mean numbers of record per user (αx) are close

to 1.0 for many datasets. By assuming that the mean

numbers of record per user, denoted by αx, is 1.0 for

all values x, we minimize the calculating cost to have

an approximated risk for interested attributes.

Definition 7 Let Rcost(X) be the risk of X calculated

in the low-cost model defined as

Rcost(X) =
|DX |
m

.

Example 6 When T = Texample and X = date, we

have that

Rcost(X) =
|DX |
m

=
3

10
= 0.3.

Theorem 1 The error rate of the low-cost model is |1−
1

αX
|.

(Proof) The relative error rate of Rcost(X) for the

exact solution, according to Section 3.2, is

=
|Rcost(X)− Pr(idf, X)|

Pr(idf, X)

=
| |DX |

m − αX |DX |
m |

αX |DX |
m

= | 1

αX
− 1|.

Thus, we have proved Theorem 1. (Q.E.D)
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The number of records m of T and the number of

kinds of X are given in this research. We do not have to
use the records to approximate the risk in this model,

that is, the cost for calculating risk is 0.

3.4 The Sampling Model

The sampling model is a model that approximates the

risk of X by calculating the mean of αx of a randomly

selected subset of T . Note that we take a random sample

of all records that contain a value x. For example, when

“2010/12/1” is randomly chosen from attribute date

of TExample, we sample all records (four records) that

contain “2010/12/1” from TExample.

Definition 8 Let D′
X = {x1, . . . , xs} be a subset of

DX of size s randomly sampled from DX . Then, we

define αx′ = 1
s

∑s
i=1 αxi

. Let Rsample(X) be the risk of

X calculated in the sampling model defined as

Rsample(X) =
αx′ |DX |

m
.

Example 7 When T = Texample and X = date and

s = 2 and D′
X = {2010/12/1, 2010/12/3}, we have that

Rsample(X) =
αx′ |DX |

m
=

2.5 · 3
10

= 0.75

because αx1
= 2 and αx2

= 3.

Let σs be a standard deviation of s samples.

Theorem 2 The maximum of error rate of the sam-

pling model is

σsm√
|s||DX |αX

. (1)

(Proof) According to Section 3.2, Pr(idf, X) = αX

|DX |/m. The absolute error of Pr(idf, X), |Rsample(X)−
Pr(idf, X)| < V ar[Pr(idf, X)] = σs/

√
s when we sup-

pose a confidence interval of 90 percent. Therefore, the

relative error rate Rsample(X) for the exact solution is

=
|Rsample(X)− Pr(idf, X)|

Pr(idf, X)

<

1√
s
σs

αX |DX |
m

=
σsm√

|s||DX |αX

.

Thus, we have proved Theorem 2.

(Q.E.D)

We have to calculate αx′ to evaluate the risk. If the

elements of D′
X are chosen with uniform probability

1/|DX |, the calculating cost is sm/|DX |.
With Table 4, we show the summary of results for

our three models. The calculating cost of the exact

Table 4 Error rate and Calculating Cost of Our Approxi-
mate Models

Model Risk Error Rate Cost
Exact Solution R(X) 0 m

Mean Rmean(X) 0 m

Low Cost Rcost(X) 1
αX

− 1 0

Sampling Rsample(X) Eq. (1) sm/|DX |

Transaction
Data

Mean
Model

Low-cost
Model

Sampling
Model

Fig. 1 Schematic Views of Our Approximate Models and
Transaction Data for Calculation Risk

value and the mean model are maximum and that of

low-cost model is minimum and that of sampling model

depends on sampling size s. The error rate of the exact

value and the mean model are minimum. Figure 1 illus-

trates a schematic view of our approximate models. The

mean model exploits all transaction data. The sampling

model exploits a part of transaction data. The low-cost

model does use no transaction data for approximating

the risk.

4 Risk Evaluation Experiment

4.1 Experiment Objective

In order to examine how universally our model works,

we evaluate the risk of the actual datasets by the mean

identification probability described in Section 3. For

the risk evaluation experiment, we use the following

three open datasets that are published in UCI Machine

Learning Repository (UCI Machine Learning Reposi-

tory, 2018c) and one dataset that is published in Lend-

ing Club (Lending Club, 2019b).

1. T1: Online Retail Dataset, the purchase history data

for one year in the UK. (UCI Machine Learning

Repository, 2018d)

2. T2: Diabetes Dataset, the hospitalization data of di-

abetics for 10 years. (UCI Machine Learning Repos-

itory, 2018b)

3. T3: Adult Dataset, the census income dataset. (UCI

Machine Learning Repository, 2018a)

4. T4: LOAN DATA, loan data for all loans issued of

2007–2011. (Lending Club, 2019a)
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Table 5 shows quantities m, n, the number of attributes

of T1, T2, T3 and T4. We treat T3 and T4 as a transaction
data, though these are not exactly transaction data.

4.2 Analysis of the Dataset

Table 5 shows the summary of attributes for T1. These

data consist of seven attributes and we adopt five at-

tributes (date, time, goods, price, number) as the

candidates for X. Figures 2–6 show the distribution of

αx for each attribute and Table 5 shows the statistics

including αX and |DX | for each attribute.

In the case of attributes date and time, the mean

number of records αx is generally high. For example,

when X = date and x = 2011/8/28, αx = 122 (one

user had 122 purchase records in one day). In our model,

such x is evaluated to be risky because it is likely to be

gained as the background knowledge and be used to
identify an individual from T . On the other hand, in

the case of the attributes, goods, price, and number,

αx is generally low and αx = 1 for most x.

Figures 7 and 8 show the scatter diagram for |Rx|
and |Ux| when T = T1 and X = date,price. The x-

axis shows |Ux| and the y-axis shows |Rx|. The red line

shows the line of |Ux| = αX |Rx| (the mean model) and

the green line shows |Ux| = |Rx| (the low-cost model).

Table 5 shows the summary of attributes for T2 ,

T3 and T4. We take four attributes (ethnicity, gen-

der, age, time) chosen out of 50 attributes as the

candidates of X because these attributes are possible

as background knowledge from T2. T3 consists of 17

attributes and we note four attributes (age, martial,

occupation, ethnicity) as candidates of X as possible

attributes as background knowledge.

Table 5 shows statistics αX and |DX | about each

attribute too. Figure 9 and 10 show the distribution of

αx for the attributes of age and date of T2.

When T = T3, αX = 1 for any x of any X because

m = n and |Rx| = |Ux|.

4.3 Result of Evaluation of Risk

We calculate the risk (exact solution) for each attribute

involved. Table 5 shows R(X) for each attribute of T1,

T2, T3, and T4. For example, the risk of the attribute

date of T1 is 0.186. In the case of T1, the attribute time

is evaluated as the riskiest at 0.322. Hence, we should

process attribute time by appropriate de-identification

technique, e.g., rounding exact time (8:45) to hours

(8:00), perturbation (8:42), and column suppression.

This makes sense since attributes related time and

date are often suppressed in de-identification use cases.
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Fig. 4 Distribution of αx when T = T1, X = goods

In the cases of T2 and T3, the risks are quite small

because |DX | and αX are small; the attribute days

for T2 and the attribute age for T3 are evaluated as

the riskiest for each dataset. Note that the mean num-

ber of records for user αX is close to 1.0 in T2, T3,

and T4 and the ranks of mean identification probability

Pr(idf, X) are consistent with that of the unique values

in attribute |DX |. While, the risk of dataset with large

αX such as T1 need to be carefully evaluated. Conse-

quently, our model can be applied to arbitrary dataset.
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Table 5 Details of T1, T2, T3, T4 and Risks of Each Attribute of These Data

T m n #Attribute X Description αX |DX | Pr(idf, X)
T1 38,087 400 7 time Purchase time (hh:mm) 22.23 551 0.322

date Purchase date (yyyy/mm/dd) 24.42 290 0.186
goods ID of purchased goods (number and character) 1.32 2,781 0.097
price Price of purchased goods (Pound sterling) 2.49 184 0.012

number Quantity of purchased goods (number) 3.15 97 0.008
T2 101,766 71,518 50 days Days in hospital (number) 1.05 14 1.45 · 10−4

age Age of patient (number) 1.35 10 1.33 · 10−4

ethnicity Ethnicity of patient (character) 1.31 6 7.73 · 10−5

gender Gender of patient (character) 1.28 3 3.78 · 10−5

T3 32,561 32,561 16 age Age of user (number) 1 73 2.24 · 10−3

occupation Occupation of user (character) 1 15 4.61 · 10−4

martial Marital status of user (character) 1 7 2.15 · 10−4

ethnicity Ethnicity of user (character) 1 5 1.54 · 10−4

T4 42,538 42,538 145 employment Employment of customers (character) 1 30,661 0.721
income Annual income of customers (number) 1 5,597 0.132
amount Amount of loan (number) 1 898 0.021
grade Grade of customers (character) 1 8 0.000
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4.4 Accuracy and Cost of Our Models

We calculate the risk of each attribute for T1, T2, T3,

and T4 efficiently with the mean model, the low-cost

model, and the sampling model. Table 6 shows the em-

pirical results for each model. Based on Section 3.2, the

estimation value Rmean(X) in the mean model is equal

to R(X) in Table 5. The evaluation value Rsample(X)

in the sampling model is provided with the 90 percent
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Fig. 7 Scatter diagram for |Rx| and |Ux| when T = T1, X =
date
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Fig. 8 Scatter diagram for |Rx| and |Ux| when T = T1, X =
price

confidence interval (µ ± σ) when s = 10. The values

marked * indicate the attribute that is evaluated as the

highest risk for each data in our approximate methods.

The risks in attributes are almost consistent in either

model except the highest one in T1. For example, the

mean model (= the exact solution) identifies attribute

time as the riskiest for T1, while the low-cost model

evaluates the goods attribute as the riskiest. In the
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Fig. 10 Distribution of αx when T = T2, X = days

case of the sampling model, the attribute becoming the

maximum value in partial relation of confidence interval

is time.

Figure 11 shows the scatter diagram for the error

and the calculation cost for each model when T = T1

and X = date. The x-axis shows the logarithm of the

calculation cost (the number of records) and the y-axis

shows the error from the exact solution Pr(idf, X).

The red points in Figure 11 show the results for

these models. The gray points show the risks evaluated

for all elements of DX . We adopt the barycenter as

the representative point for this model. Note that the

sampling model evaluates the risk from s points that

are randomly chosen from |DX | points. Table 7 shows

the error and cost of each model.

Figure 12 shows the distribution of αX when we

sample 50 elements from DX for 1,000 times randomly

for T = T1, X = date. Table 8 shows the mean and the

standard deviation of αX for the number of groups sam-

pled. Therefore, we are able to approximate αX from

αx given x sampled randomly. The mean value rapidly

converges, as the sampling size increase. Therefore, we

evaluate the risk in the sampling model using s = 10.

Table 6 Approximated Evaluation Values for Each Model

T X Rmean(X) Rcost(X) Rsample(X)(s = 10)
T1 time *0.3217 0.0145 *[0.1411, 0.5998]

date 0.1860 0.0076 [0.1267, 0.2786]
goods 0.0965 *0.0730 [0.0718, 0.0982]
price 0.0121 0.0048 [0.0036, 0.0132]

number 0.0080 0.0025 [0.0017, 0.0152]
T2 days *1.45E-04 *1.38E-04 *[1.46E-04, 1.52E-04]

age 1.33E-04 9.83E-05 [1.21E-04 , 1.42E-04]
ethnicity 7.73E-05 5.90E-05 [6.92E-05, 8.31E-05]
gender 3.78E-05 2.95E-05 [3.08E-05 , 4.30E-05]

T3 age *2.24E-03 *2.24E-03 *[2.24E-03, 2.24E-03]
occupation 4.61E-04 4.61E-04 [4.61E-04, 4.61E-04]
martial 2.15E-04 2.15E-04 [2.15E-04, 2.15E-04]
ethnicity 1.54E-04 1.54E-04 [1.54E-04, 1.54E-04]

T4 employment *0.7208 *0.7208 *[0.7208, 0.7208]
income 0.1316 0.1316 [0.1316, 0.1316]
amount 0.0211 0.0211 [0.0211, 0.0211]
grade 0.0002 0.0002 [0.0002, 0.0002]

Table 7 Error and Calculation Cost for Proposed Model

Model Cost Error
Mean 38087 0
Sample 131.3 0.073
Cost 0 0.178

Low Cost

Sample

Mean

Fig. 11 Scatter Diagram for the Error and Calculation Cost
for Each Model When T = T1 and X = date

Table 8 Mean and Standard Deviation when some x are
Sampled from DX and T = T1 and X = date

#Sample mean σ

1 24.03 13.33
50 24.47 1.75

100 24.39 1.09
150 24.41 0.78
200 24.41 0.53
250 24.42 0.33

|DX | 24.42 0

4.5 Practical Way to identify knowledge of attacker.

It is getting difficult to know which attribute can be

known to attackers since we are now in the era of big

data where a large quantity of information is available

to everyone including attackers. However, we believe

that there are some objective ways to assume the back-

ground knowledge; 1. Based on open statistics, we as-
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sume the knowledge of attributes to be given to at-

tacker. 2. Based on some criteria, we assume some class

of attackers with distinct knowledges. 3. Based on the

known cyber incidents so far, we accumulate the quan-

tity of attributes and estimate the approximation of

quantity of knowledge. Some of these may require fu-

ture study.

5 Related Works

There are two representative studies to evaluate the pri-

vacy level of data, k-anonymity (Sweeny, 2006) and dif-

ferential privacy (Dwork, 2006). k-anonymity was pro-

posed by Sweeney in 2006. It evaluates the privacy level

of data according to whether the data have at least k

indistinguishable records in terms of quasi-identifiers.

Differential privacy was introduced by Dwork in 2006. It

evaluates the privacy level of data according to whether

the possibility of restoring personal data from differ-

ences in analysis results of the data is high.

There are many works to extend the fundamental

models in de-identification. Tamir et. al proposed k-

concealment(Tassa et al., 2018) that is an alternative

model of k-anonymity. Domingo-Ferrer et al. showed

that the ε-differential privacy and t-closeness that is

an extension of k-anonymity are strongly related to

one another (Domingo-Ferrer and Soria-Comas, 2015).

Stokes defined (k, l)-anonymity (Stokes, 2012) that is

relaxation of k-anonymity and n-confusion (Stokes and

Torra, 2012) which is a generalization of k-anonymity.

These schemes help to reduce the risk of re-identification,

but the risk still remains. Our approximate methods are

able to evaluate the remaining risk of data that was al-

ready de-identified by either of these works including

the k-anonymization method.

Technical Specification ISO/TS 25237 (ISO, 2008)

defines ano-nymization as “a process that removes the

association between the identifying data and the data

subject”. Many anonymization algorithms have been

proposed to preserve privacy while retaining the util-

ity of the data that have been anonymized. That is,

the data are made less specific so that a particular

individual cannot be identified. Anonymization algo-

rithms employ various operations, including suppres-

sion of attributes or records, generalization of values, re-

placing values with pseudonyms, perturbation with ran-

dom noise, sampling, rounding, swapping, top/bottom

coding, and micro aggregation (ICO, 2012) (Aggarwal

and Yu, 2008).

Koot et al. proposed a method to quantify anonymity

via an approximation of the uniqueness probability us-

ing a measure of the Kullback–Leibler distance (Koot

et al., 2011). Monreale et al. proposed a framework for

the anonymization of semantic trajectory data, called c-

safety (Monreale et al., 2011). Based on this framework,

Basu et al. presented an empirical risk model for privacy

based on k-anonymous data release (Basu et al., 2015).
Their experiment using car trajectory data gathered in

the Italian cities of Pisa and Florence allowed the em-

pirical evaluation of the protection of anonymization of

real-world data.

In 2017, Torra presented a general introduction to

data privacy (Torra, 2017). Li and Lai proposed a def-

inition of a new δ-privacy model that requires that no

adversary could improve more than δ privacy degree (Li

and Lai, 2017). Tomoaki et al. consider low-rank ma-

trix decomposition as one of the anonymization meth-

ods and evaluate its efficiency for time-sequence data

(Mimoto et al., 2018).

6 Conclusions

In this paper, we studied the attacker who gains back-

ground knowledge from an attribute of the transaction

data and proposed three approximate models that eval-

uate the risk of a dataset by approximating the mean

identification probability of the attacker.

We applied our model to four actual datasets (the

purchase history data for one year in the UK, the hos-

pitalization data of diabetics for 10 years, the census

income dataset, and the loan data) and evaluated the

risks of these data. Our experiment reveals that our risk

model (mean identification probability) is able to find

the riskiest attribute from dataset and serves as a guide

to decide the attributes to process or delete when we

de-identify data. For example, the attribute time is the

riskiest for five attributes in purchase history dataset T1

and should be processed first.

The mean model provides the exact risk in the cost

of examining all records. On the contrary, the low cost
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model gives the approximation of risk in the minimized

cost, but with relatively large error. The sampling model
approximates the risk with intermediate cost between

the two extreme models. We have clarified mathemati-

cal properties of three models in terms of the accuracy

and the cost. The riskiest attribute of dataset was found

by these three approximate models in a high accuracy

with less calculating cost.

Our future studies include the extension of our model

to the aggregated risk of multiple attributes known to

attacker, the extension of model so that we consider

the quality of background knowledge rather than the

quantity of knowledge. This study noted the risk of at-

tributes ‘before’ de-identification in this paper. We will

study the risk of attribute ‘after’ de-identification and

the method to choose appropriate method to de-identify

riskily records.
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