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Abstract. De-identification is a process used to prevent individuals
from being identified using personal data, including personal identifica-
tion information. In conventional de-identification studies, re-identification
is a process used to identify individuals from static data where there is
one record specified for each individual. In contrast, in this paper, we
employ dynamic data, for example, trajectory data and online payment
records. In particular, we consider the open competition data from the
2016 Privacy Workshop Cup (PWSCup) held in Japan consisting of pur-
chasing history data. Throughout the analysis, we find that attackers
can re-identify individuals with a high degree of accuracy from the de-
identified purchase history data based on a feature of the set of goods.
To address this re-identification risk, we propose a new method to de-
identify history data by adding dummy records under a restriction. We
evaluate the performance of our proposed method and compare it with
the performance of the PWSCup participants as an experiment in data
privacy.

1 Introduction

De-identification is a process to prevent individuals from being identified from
datasets containing personally identifiable information (PII). The selection of de-
identification methods to be chosen carefully to reduce the risks of re-identification
in the given de-identified data. Companies should confirm that the re-identification
risks have been reduced sufficiently before transferring big data to their busi-
ness partners. In Japan, the Act on the Protection of Personal Information fully
came into effect in 2015, in which a new notion called “Anonymously Processed
Information1” was introduced [1]. Due to this revision, a data controller is al-
lowed to provide various services using a data containing PII, free from the risk
of re-identification through the acceptable handling of data.

However, the most of the common de-identification techniques assumes the
datasets are well structured, i.e., data is represented logically in the form of
a table. Hence, the dataset to be applied de-identification techniques is limited

1 Japanese version of de-identified information with slightly changes to common
anonymized data.



within the small fraction of big data. For example, ISO/IEC 20889 does not apply
to complex datasets, e.g., free-form text, images, audio, or video[2]. Nevertheless,
the diversity of datasets dealt in industries increases year by year.

In order to enrich the range of techniques for de-identification can happen
to the whole dataset significant sufficiently, in this paper, we study a transac-
tion data consisting of multiple records per individuals at the time of events.
Especially, the payment histories data are widely stored in many business ap-
plications and are at risk to be identified for promoting targeted advertisement.
With the motivation of development of secure de-identification techniques to be
applied to more complex data, the data competition, Privacy Workshop Cup
(PWSCup) [3], was held in 2015. Even if the de-identification of purchasing
history was performed confidentially, a motivated adversary can happen to the
whole dataset and successfully re-identify individuals based on some features of
payments. We noted that the customers in data must have some characteristics
on purchasing goods and the sets of purchasing goods are significant sufficiently
to re-identify individuals. In this paper, we provide some re-identification algo-
rithms exploiting the feature of payment and evaluate the risk of record linkage
in these algorithms.

De-identification resilient against the re-identification threats is not easy. A
simplest method for de-identification is suppression of records so that no two
records are indistinguishable. Record suppression loses utility of data extremely.
Second way is adding some dummy records so as to hide the purchasing charac-
teristics of customers. However, naive addition may suffer the utility reduction
of data when we add too many dummy records. To balance the trade off be-
tween security and utility, we shall carefully classify the set of customers in
dataset into some smaller clusters in which customers share common purchasing
characteristics and less dummy records are required. However, the conventional
clustering algorithms such as k-means method suffers from the following prob-
lems: (1)(Monopoly of cluster) A few huge clusters are occupied the most of
records. For instance of PWS Cup 2016, the purchase history data contains
38,087 records of unique 2,781 goods and results in the large cluster with com-
mon payment pattern of the most frequent goods. Such a big cluster be suffered
the reduction and needs to add many dummy records. (2)(Too-many Minorities)
Many small (mostly, size of 1) clusters are produced and most of them are free of
change of dummy record. However, the singletons are easy to re-identify. Typical
transaction data has similar property, i.e., with many records of small unique
diversity. Hence it could be skewed and be suffered the reduction of utility of
many noisy dummy records. Therefore, we need to develop a new clustering algo-
rithm customized so that all cluster sizes are balanced. As well as clustering, we
should identify the optimal number of clusters in the perspectives of utility (with
minimizing dummy records) and security (with sufficient number of individuals
in a cluster).

In this paper, we address the unbalanced issue of clustering in the following
ways: (1) A clustering method replacing Term (good) Frequency–Inverse Docu-
ment (individual) Frequency (TF-IDF) weights by the frequencies of purchasing



goods. With TF-IDF weight, the rare items are weighted higher than common
items and hence the monopoly cluster can be weakened. (2) A new algorithm for
clustering prevents from being uniquely identified with restricted size of clusters
by the minimum clustering size. As far as the threshold size, every cluster grows
to a certain size that prevents from identified uniquely. We evaluate the proposed
algorithm empirically in open datasets as well as theoretical bounds in terms of
number of clusters.

The remainder of the paper is organized as follows. In Section 2, we show the
characteristics of the purchase history data and the re-identification risks that
are revealed in PWSCup 2016. In Section 3, we propose a method to de-identify
data. In Section 4, we describe some experimental results. We introduce some
references in Section 5 and Section 6 concludes the paper.

2 Characteristics of Purchase History Data and
Re-identification Risks

2.1 Purchase History Dataset

The Online Retail Data Set [5] comprises the actual purchase history data ob-
served in one year for an online retail shop in the UK and is published at the UCI
Machine Leaning Repository [4]. This dataset has been used in many studies [3].

In this paper, we define the fundamental quantities of the dataset as follows.

Definition 1 Let U = {u1, . . . , un} be a set of customers in the dataset. Let
U ′ = {u′

1, . . . , u
′
n} be the set of customers in the de-identified data. Let I(U) =

{g1, . . . , g�} be a set of goods purchased by all customers Let I(ui) be a subset
of I(U) purchased by customer ui. Let b be the mean number of goods that a
customer purchases in a year.

We quantify a degree of similarity between customer ui and uj in terms of
the sets of purchased goods as the Jaccard coefficient as follows.

Definition 2 Let μ be the mean of the Jaccard coefficients between every two
customers defined as μ = 1/

(
n
2

)∑
i �=j∈U J(ui, uj), where J() is defined by J(ui, uj) =

|I(ui) ∩ I(uj)|/|I(ui) ∪ I(uj)|. Let h be the mean number of goods that are pur-
chased by every two customers ui and uj, i.e., h = |I(ui) ∩ I(uj)|.

Given the dataset statistics, we estimate the mean Jaccard coefficient in the
following way.

Proposition 1 Let b and μ be the mean number of goods that a customer pur-
chases in a year and the mean size of the intersection of the two sets of goods
purchased by distinct customers. Let h be the mean number of goods that are
purchased by every two customers ui and uj, i.e., h = |I(ui)∩ I(uj)|. Then, the
mean Jaccard coefficient is h = 2bμ/(1 + μ).



Proof: We are able to transform μ

μ =
E(|I(ui) ∩ I(uj)|)

E(|I(ui)|) + E(|I(uj)|)− E(|I(ui) ∩ I(uj)|) =
h

2b− h
. (1)

By solving for μ, we have the proposition. �

The transaction data contains 400 users (n = 400), 38,087 transactions (m =
38, 087), and 2,781 goods. From observation of these data, we found that a
customer purchases b = 65 goods on average and the mean Jaccard coefficient
is 0.03. Using these values, we estimate h = 4 out of 65 goods also purchased
by other customers. The maximum value of the Jaccard coefficient between two
customers is 0.41 and the mean value is μ = 0.03. This means that the most
similar pair of customers has a similarity of only 41%. In other words, the sets
of purchased goods are quite distinct and there is great diversity in customers.

2.2 Record Linkage Risk from the Jaccard Coefficient

The Jaccard coefficient is a critical quantity for records given the threat of
relinking it with the de-identified data. This is because a motivated attacker
who happens to observe the set of goods that the target customer purchased
on the retail site can easily distinguish the customer’s records by examining the
Jaccard coefficients of all candidate customers.

To prevent the attacker from identifying customers, we need to modify some-
how the dataset so that the attacker can single out no one set. For example,
the participants de-identify data by adding noise, deleting records, and adding
dummy records. We define the quantities related to this process.

Definition 3 Let m and Δm be the total number of records in the dataset and
the difference in the number of records through de-identification, respectively.
The resulting number of records through de-identifying is m′ = m+Δm.

The purchase history data is dynamic data consisting of some transactions
records over time. We argue that dynamic data is more vulnerable than static
data with a very high re-identification risk because of its observation over the
long term. For example, the Online Retail Dataset has re-identification risk via
the purchased goods set for one year.

To model the malicious behavior of the attacker, we propose a re-identification
method using the characteristics of the purchased goods set of customers in Al-
gorithm 1. In the method, we assume that an attacker has access to all of the
transaction records in the original data. Given the de-identified data, the at-
tacker will then attempt to re-identify the victim customer who has the most
similar pair to the target customer using the Jaccard coefficient. Note that the
calculation amount of our algorithm is O(n2).



Algorithm 1 Re-identification Using the Jaccard Coefficient

Input: M,T,M ′, T ′

Step 1.
Let M,T be the data and M ′, T ′ be the de-identified data. Let I(ui), I(u

′
i) (i =

1, . . . , n) be a set of purchased goods of customer ui in T and u′
i in T ′.

Step 2.
Let i∗j = arg max

i∈{1,...,n}
J(I(u′

j), I(ui)) (j = 1, . . . , n′) be the index of the customer in T ′

who is the nearest to ui.
Output: Q = (i∗1, i

∗
2, . . . , i

∗
n)

3 Our Proposal on De-identification

3.1 How to Prevent Data Being Distinguished by the Jaccard
Coefficient

The challenge is to prevent data being distinguished by the Jaccard coefficient.
We pursued this by mixing the records of purchased goods so that no customer
could be re-identified with the Jaccard coefficient using three methods. (1)Alter-
ing some existing records (m′ = m). (2) Deleting some existing records (m′ < m).
(3) Adding some dummy records (m′ > m). Methods 1 and 2 (altering and delet-
ing records) may lose accuracy in the data. In contrast, Method 3 (adding some
dummy records) preserves the existing purchase histories.

In this paper, we study a method to add some fake records that do not spoil
the utility of the data. In Figure 1, we illustrate how our algorithm works. Table
(a) is the original transaction data T of three attributes, user IDs, record IDs,
and the good IDs of five records. We detail the list of purchased goods for each
customer in Table (b). In this case, we mix up three customers u1, u2, and u3 by
adding some dummy records randomly chosen from the set of goods. Finally, we
provide the de-identified data in Table (d), shown as I(u′

1) = I(u′
2) = I(u′

3) =
I(u1) ∪ I(u2) ∪ I(u3) = {g1, g2, g3, g4, g5}.

As shown, there is a trade-off between the number of dummy records and the
utility of the de-identified data. Simply put, if we attempt to unify all customers,
the number of dummy records will be huge and the data useless. Therefore, we
need to minimize the amount of dummy data by carefully classifying the set of
customers into some small clusters sharing similar purchasing characteristics.

The simplest way to cluster similar customers is to begin with representative
c customers, and then extend other customers to the closest cluster, letting c
be the number of clusters, X = x1, . . . , xc the set of clusters, and si = |xi| the
size of a cluster. Note that cluster xi is that set of customers partitioning the
whole set of customers U , i.e.,

⋃c
i=1 xi = U . The number of dummy records is

calculated as Δm =
∑
u∈x

|I(x)| − |I(u)|.



3.2 TF-IDF Distances between Records

Generally, purchase history data contain many goods that are distributed “long-
tailed,” whereby a few customers occupy most records and so a simple clustering
method involves a large number of dummy records. When we make the distri-
bution of the cluster sizes resulting in the simple clustering method (k-means
method) with the Jaccard coefficient as the distance between two customers,
the largest cluster size is 294, which is excessively large, while the remaining 45
clusters have just one element. This suggests the cluster sizes are greatly biased.

To address the monopoly behavior of clusters, we propose replacing the sim-
ple Jaccard coefficient by the TF-IDF value of the set of goods. That is, we
use the frequency of the term (good) times the inverse number of documents
(customers) that contain the term (good) to weight the clustering of customers.
Consequently, we obtain the improved method of clustering using the TF-IDF
weight in Algorithm 2.
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Fig. 1: How to Add Dummy Records to
Data

Fig. 2: Example of Clustering of Cus-
tomers via TF-IDF

Figure 2 depicts how the algorithm works for an example of four customers.
Suppose we classify customers U = {u1, u2, u3, u4} into two clustersX = {x1, x2}.
Table (a) details the list of the purchased goods sets for the four customers, char-
acterized by a binary matrix of purchased goods in (b). We replace the binary
matrix by the matrix of TF-IDF weights of goods shown in (c). For example,
the characteristics value of goods g1 of u1 is 0.5 because TF = 1/2 and IDF = 1.
Finally, we have the resulting clusters x1 = {u1, u2} and x2 = {u3, u4} based on
the cosine similarity between the two customers, as shown in (d). Note that the
size of the clusters is evenly balanced because of the similarities in the TF-IDF
values.



Algorithm 2 Weighting of Purchased Goods via TF-IDF

Input: ui ∈ U, I(ui), c
Step 1. Let vi = (fi1, fi2, . . . , fi�) be a characteristics vector of dimension � of ui

where

fij =

{
1 if I(ui) � gj

0 otherwise.

Step 2. Let Dj = {ui ∈ U
∣∣I(ui) � gj} be a set of customers who purchased a good

gj . Let f ′
ij = (fij/

�∑
k=1

fik)(log
n

|Dj | + 1) be a weight of fij via TF-IDF and v′
i =

(f ′
i1, f

′
i2, . . . , f

′
i�) be a characteristics vector of ui.

Step 3. Classify the customers U into clusters via k-means and the cosine similarity
between the characteristics vectors v′.

Output: X = {x1, x2, . . . , xc}

3.3 Method 1 : De-identification Method Based on k-means
Clustering

We propose two de-identification methods in this paper.
Method 1 using weighting goods in the TF-IDF performs a clustering of the

k-means method via cosine similarity, and adds some dummy records so that the
sets of purchased goods in the cluster are indistinguishable. Figure 3 plots the
distribution of cluster sizes when the number of clusters is specified as c = 50.
Letting xmax and xmin be the largest and smallest clusters, respectively, we
observe that |xmax| is 32 and |xmin| is 1. Obviously, there is still skewness in the
distribution and it also suffers from reduction in accuracy caused by adding too
many dummy records for customers belonging to a large cluster.

Fig. 3: Distribution of Cluster Size via
Method 1 (c = 50)

Fig. 4: Distribution of Cluster Size via
Method 2 (smin = 5, c = 50)



Algorithm 3 Algorithm to Balance Method 1

Input: smin, c,M, T
Clustering via Method 1
Set of clusters: X = {x1, x2, . . . , xc}
for x in {xi ∈ X

∣∣|xi| < smin} do
Maximum cluster: xmax ∈ X
while |x′| < smin do

uj = arg max
uj∈xmax,ui∈X

J(I(ui), I(uj)), x′
max ← xmax − {uj}, x′ ← x ∪ {uj}

end while
end for
Add some dummy records in a way like Section 3.1.

Output: M ′, T ′, P

3.4 Method 2 : Balanced De-identification Method

To address the unbalanced issue, we propose a second de-identification method
with the restriction of the smallest cluster size. In Method 2, we restrict the
cluster sizes so that these are not below the lower limit of smin, which corresponds
to quantity k of k-anonymity.

Algorithm 3 shows the modified method. We move a customer whose cluster
is the largest cluster xmax to the cluster with a size less than smin. We repeat
the moving operation until all cluster sizes are larger than smin. The minimum
threshold value smin is specified depending on the number of clusters c and will
be in the range of {2, 3, . . . , �n/c�}. Figure 4 illustrates the distribution of cluster
sizes in Method 2 when the minimum threshold is smin = 5 and the number of
clusters is c = 50. Compared with the clustering result in Figure 4, the maximum
cluster size falls from 32 (Figure 3) to 16 (Figure 4) and the sizes of all clusters
are satisfied as they are all more than smin.

4 Experiments and Evaluation of Our Method

4.1 The Relationship between the Utility and the Number of
Dummy Records

The utility of the de-identified data greatly depends on the number of dummy
records Δm. Table 1 provides the relationship between some known utility met-
rics used in PWSCup 2016 and Δm. We identify a strong negative correlation
between Δm and utility metrics (U1-cMAE, U2-cMAE, and U3-RFM). U1 and
U2 are metrics that evaluate utility of de-identified data with mean absolute
error (MAE) between cross tabulations of the original data and de-identified
data. U3 is a metrics that evaluate utility of de-identified data with RFM (Re-
cently, Frequency, Monetary) analysis that is a method to analyze customers.
This implies that the utility of the de-identified data decreases as Δm increases.
When the cluster size c increases, Δm decreases, and accordingly, the rate of
re-identification increases because the correlation coefficient between Δm and c
is –0.8454.



Table 1: Correlation Coefficients between Δm and Utility metrics

Δm U1 U2 U3 jaccard Reid c

Δm 1.0000
U1-cMAE 0.9798 1.0000
U2-cMAE 0.9798 1.0000 1.0000
U3-rfm 0.9547 0.9876 0.9876 1.0000

jaccard -0.8586 -0.9327 -0.9327 -0.9494 1.0000
Reid -0.8489 -0.9247 -0.9247 -0.9432 0.9996 1.0000
c -0.8454 -0.9220 -0.9220 -0.9406 0.9994 0.9999 1.0000

4.2 Theoretical value of Δm

We are interested in estimating the theoretical value of Δm in the method to
add dummy records given ai of a customer u in a cluster x as follows. (1) a1:
The number of goods purchased by only customer. (2) a2: The number of goods
purchased by customer u and another customer. (3) a3: The number of goods
purchased by the customer u and two other customers. Note that ai is the mean
within cluster x. We translate h and b as follows via ai.

h = a2 +

s−2∑
i=1

(
s− 2

i

)
ai+2, b = a1 +

s−1∑
i=1

(
s− 1

i

)
ai+1 (2)

Let us calculate the number of dummy records that we should add to this
cluster. First, because a1 goods are purchased by only u1, we should add a1
dummy records for each of u2 and u3. Second, because a2 goods are purchased
by u2 and u3, we should add a2 dummy records for u1. We repeat this operation
for u2 and u3. As a result, we have added 3(2a1 + a2) dummy records to this
cluster in total. The number of dummy records added to a cluster x of size s is
calculated as Δm(x, s) =

∑s
i=1(s− i)

(
s
i

)
ai Therefore, we calculate the expected

value of the number of dummy records added to the data as follows.

E(Δm) = cΔm(x, s) = −hn3

2c2
+ (b+

h

2
)
n2

c
− bn (3)

≥ (b+
h

2
)
n2

c
(4)

We generalize this using parameter b, μ, n, and the number of clusters c. Note
that we assume that ai is at least zero (ai ≥ 0) and the cluster size s is fixed for
all clusters (s = n/c).

4.3 Utility and Security

Table 2 shows the relationship between Δm and smin. Note that Δm is min-
imized when smin is �n

c � in each c. We observe that the Jaccard coefficients



Table 2: Relationship between smin and Δm

c = 50 c = 100 c = 125

Δm jaccard Reid Δm jaccard Reid Δm jaccard Reid

Method 1 182897 0.1728 0.1235 128568 0.3060 0.2488 97581 0.3692 0.3120
smin = 2 183902 0.1729 0.1223 99228 0.3061 0.2475 60492 0.3687 0.3105
smin = 3 175449 0.1726 0.1222 68357 0.3041 0.2480 *46101 0.3667 0.3102
smin = 4 162474 0.1723 0.1218 *59374 0.3044 0.2465
smin = 8 *125798 0.1681 0.1218

are distributed across a small range and the standard deviation of the Jaccard
coefficient is smaller than 0.01.

Figure 5 shows the distribution of Δm with respect to c. In the experiment,
we investigate the purchase history data of 400 customers with the threshold
value smin specified as �n

c �. In a comparison of Methods 1 and 2, Method 2 has
only about 53% of the Δm of Method 1. The solid line in Figure 5 plots the
theoretical estimation of Δm calculated in Eq. (3)

We show the actual rate of re-identified records of each c in the column
labeled Reid in Table 2. For each of the de-identified data, we apply Algorithm
1, being the Jaccard re-identification method described in Section 2, for some c.
The Jaccard re-identification method successfully identifies at least one customer
in each cluster who purchased goods most frequently. We observe no difference
between the two methods. Therefore, we have the simplest consequence that the
expected rate of de-identified data to be re-identified using either Method 1 or
2 is calculated as E(Reid) = c/n.

Fig. 5: Comparison of Utility of Method 1
and Method 2

Fig. 6: Best Number of Clusters c∗ for
Method 2



4.4 Optimum Number of Clusters

When we de-identify data, we reduce the utility of the data but enhance its
security. However, these metrics depend on the use case and structure of the
target data and it is difficult to evaluate data comprehensively. In this paper,
we evaluate data comprehensively via the metrics (αE(Δm) + E(Reid))/2 · · ·
(5) referring to the metrics (Utility + Security)/2 used in PWSCup 2016 and
calculate the best number of clusters c∗. Let α be a coefficient to normalize
Δm to the range of 0 ≤ E(Δm) ≤ 1. Figure 6 illustrates the best number of
clusters c∗. When we de-identified the data for n = 400, b = 65, and μ = 0.03
via Method 2, the best number of clusters c∗ is 130. Let us consider the best
number of clusters c∗ for the number of customers n. Substituting equation (4)

for Δm in equation (5), we obtain c∗ =
√

α(b+ h
2 )n

3 from the minimum value

of equation (5). Note that α is a parameter depending on n.

5 Related Works

Technical Specification ISO/TS 25237 [6] defines anonymization as “a process
that removes the association between the identifying data and the data sub-
ject.” The ISO definition classifies anonymization techniques into masking and
de-identification. Many anonymization algorithms have been proposed to pre-
serve privacy while retaining the utility of the data that have been anonymized.
That is, the data are made less specific so that a particular individual cannot
be identified. Anonymization algorithms employ various operations, including
suppression of attributes or records, generalization of values, replacing values
with pseudonyms, perturbation with random noise, sampling, rounding, swap-
ping, top/bottom coding, and microaggregation [7, 8].

Koot et al. proposed a method to quantify anonymity via an approximation of
the uniqueness probability using a measure of the Kullback–Leibler distance [9].
Monreale et al. proposed a framework for the anonymization of semantic trajec-
tory data, called c-safety [10]. Based on this framework, Basu et al. presented an
empirical risk model for privacy based on k-anonymous data release [11]. Their
experiment using car trajectory data gathered in the Italian cities of Pisa and
Florence allowed the empirical evaluation of the protection of anonymization of
real-world data. Stokes et al. defined n-confusion [12], which is a generalization
of k-anonymity. In 2017, Torra presented a general introduction to data privacy
[13]. Li and Lai proposed a definition of a new δ-privacy model that requires
that no adversary could improve more than δ privacy degree [14].

6 Conclusions

We revealed the risk of data to be re-identified via the characteristics of purchas-
ing goods of customers and proposed the de-identification method by minimizing
additional dummy records to be add the datasets. In our proposal method, the



set of customers are classified into some clusters based on the characteristics of
purchasing goods weighted as the TF-IDF. We have demonstrated our proposed
algorithm reduces the number of dummy records as far as restricted size of clus-
ters. We estimated the expected value of the number of dummy records in a
simple mathematical model and identified the optimal number of clusters that
minimizes the mean re-identification rate under the balanced utility metrics.

Our future studies include the evaluation of accuracy of clustering and ef-
fectiveness in case of other datasets. We will try to use other de-identification
methods like deleting and adding noise to improve our de-identification method.
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