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What is De-identification?
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What is De-identification?
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Record Linkage Risk from the Jaccard Coefficient
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Problems of classification customers

monopoly of cluster

too-many minorities

Problem 1 (the monopoly of cluster)

The utility of data will decrease
because the too many dummy records
are required to generalize many users
belonging the large one.

Problem 2 (too-many minorities)

The privacy of data will be lost
because the customers in this clusters
must be identified.



How to resolve these problems

Method 1
k-means clustering based on TF-IDF

TF: Term Frequency
(Frequency of goods of customers)
IDF: Inverse document frequency
(Importance of goods)
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Evaluation in Online Retail

We evaluate these two problems

in Online Retail Dataset. 30
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The sets of purchased goods
are quite distinct and there is
great diversity in customers
because this data contains man
goods (2,781 goods).
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Fvaluation for Online Retail Dataset (2/2)
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Method 1 for Online Retail Dataset
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Method 2 for Online Retail Dataset
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The Relations

nip between the lower limit and the

Number of DL

mmy Records

s i e rs

Method 1 182,297 0.1235 128,568 0.2488 97,581 0.3120

Method 2

183,902 0.1223 99,228 0.2475 60,492 0.3105
175,449 0.1222 68,357 0.2480 46,101 0.3102
162,474 0.1218 59,374 0.2465
125,798 0.1218

In general, we improve the utility of
de-identified data as limit size increase.



The Relationship between the lower limit and the
Number of Dummy Records
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Method 1 182,297 0.1235 128,568 0.2488 97,581 0.3120
183,902 0.1223 99,228 0.2475 60,492 0.3105
175,449 0.1222 68,357 0.2480 46,101 0.3102
162,474 0.1218 59,374
125,798 0.1218

Method 2

You can see the re-identification

rates are almost stable in the column. ;
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Theory in the Number of Dummy Records

(*10000)
n : the number of customers .

c : the number of clusters

b : the mean number of goods that a
customer purchases in a year

h : mean size of the intersection of
the two sets of goods
purchased by distinct customers

Am : the number of dummy records
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Conclusions

*We revealed the risk of purchasing goods of customers and
proposed a new de-identification method by reducing additional
dummy records.

We have demonstrated that our proposed algorithm reduces the
number of dummy records as far as restricted size of clusters.

*We estimated the expected value of the number of dummy
records.
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