匿名加工情報の応用(2): 各種傷病を予測する健康診断モデル

2020. 10. 29.

CSS 2020

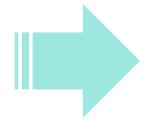
池上和輝 伊藤聡志 菊池浩明

明治大学大学院 先端数理科学研究科 先端メディアサイエンス専攻

背景

- ■健康診断データの利用は傷病罹患の分析に有効
 - □野田らは,住民検査結果と人口動態統計死亡票分析し, 検査項目と死亡 との関係を明らかにした. [1]
 - ・例)女性の総コレステロール低値ならば、脳卒中による死亡リスクが1.98倍
 - □川南らは、喫煙習慣によるがん、肺 がん死亡へ影響を分析[2]
 - 毎日喫煙する集団の肺がん死亡の相対危険度が男性で 6.67 倍





病気にかかる リスク算出

問題点

■問題点

- □2017年5月の個人情報保護法の改正に伴い,死亡票が使用できない
- □個人情報は利用目的を特定して適切に取り扱うことが定められた
- □病歴等は要配慮個人情報に分類されるため,個人の同意なく取得が禁止
- ■これまでの大規模なコホート研究は違法

問題点の解決手法

■解決手法

□匿名加工された20万人分の健康診断・傷病データを使用

	野田ら	本分析			
データ利用方法	人口動態統計 <mark>死亡票</mark> の 目的外利用	匿名加工情報			
人数	92,277	68,629			
説明変数	12	38			
傷病数	4	274			
対象期間	1993 - 2001(9年間)	2008 - 2016(9年間)			

研究目的

■健康診断データから有益な知見を得る

■リサーチクエッション

- 1. 健康診断と傷病罹患の関係
- 2. 健康診断データから傷病罹患予測モデルの作成・評価
- 3. 匿名加工によるの予測モデル精度の劣化

データセット

■概要

□健康診断データ : 10年間(2008-2018)の健康診断結果

□傷病レセプトデータ:患者の診断された傷病の記録

□医薬品レセプトデータ:患者が処方された医薬品の記録

■健康診断データのクレンジング

□分析のため欠損値などの不要なレコードを削除

	対象年	レコード数 N	欠損値セル数	説明変数の数 M
処理前	2008-2018	964,635	10,536,861	49
処理後	2008-2016	203,521	0	38

レセプトとの突合

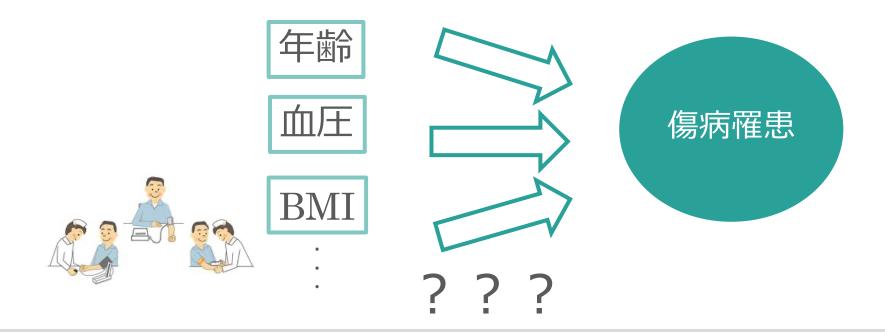
- ■**ユーザ**IDと**受診年**から突合を行う.
- ■健康診断受診年から3年以内に傷病レセプトがあれば,そのユーザは罹患したと見なす.
- ■罹患対象レセプトを常に健康診断から3年分確保するため、健康 診断データは2008-2016年を使用する.

例)健康診断をX年に受けたときの, 突合候補レセプト

	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018
健康診断	X		X						X		
傷病レセプト											

リサーチクエッション

- 1. 健康診断と傷病罹患の関係
- 2. 健康診断データから傷病罹患予測モデルの作成・評価
- 3. 匿名加工によるの予測モデル精度の劣化



分析方法1:ロジスティック回帰

- ■健康診断と傷病罹患の関係をロジスティクス回帰により分析する
- ■野田らのコホート研究[1]の結果と比較

	野田ら	本分析			
データ利用方法	人口動態統計死亡票の 目的外利用	匿名加工情報			
人数	92,277	68,629			
説明変数	12	38			
傷病数	4	274			
対象期間	1993 - 2001(9年間)	2008 - 2016(9年間)			
被験者の年代	40-79	19-74			
分析方法	Cox回帰	ロジスティック回帰			
目的変数	死亡	三年以内の罹患			

ロジスティック回帰結果(一部)

* 5%有意水準

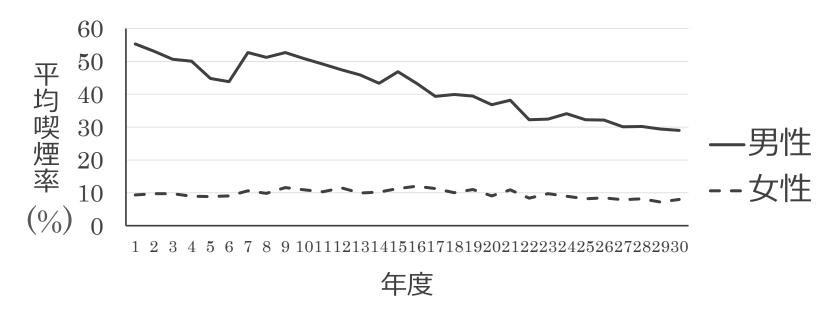
先行研究と一致

		脳卒中		がん				
	Estimate	オッズ比	相対危険度	Estimate	オッズ比	相対危険度		
		OR	RR[1]		OR	RR[1]		
年齢(歳)	0.17 *	1.18	1.14	0.12 *	1.13	1.09		
BMI	-0.02	0.99	1.00	-0.05 *	0.95	0.86		
収縮期血圧	0.03	1.03	1.02	-0.02 *	0.98	-		
HDLコレステロール	-0.003	1.00		-0.02 *	0.98	0.85		
血圧治療	0.13 *	1.14	1.56	0.08 *	1.08	1.15		
喫煙	0.01	1.01	1.27	-0.04 *	0.96	1.51		
睡眠	-0.12 *	0.89		-0.06 *	0.94	工一 致		
飲酒(ほとんど飲まない)	0.04 *	1.04		0.02 *	1.02			
運動習慣	-0.01	0.99		-0.03 *	0.98			

先行研究では, 含まれなかった睡眠や飲酒, 運動習慣と傷病の関係

喫煙因子の効果が不一致の理由

- ■成人喫煙率(男性)
 - □2000年:55%, 2018年:29%[2]
 - □喫煙者が,禁煙により非喫煙者となっている



■先行研究では目的変数が死亡なのに対して, 本分析では3年以内の罹患である.

リサーチクエッション

- 1. 健康診断と傷病罹患の関係
- 2. 健康診断データから傷病罹患予測モデルの作成・評価
- 3. 匿名加工によるの予測モデル精度の劣化

	2008	2009	2010	2011	2012	2013	2014	2015	2016
健康診断									
傷病レセプト									

脳卒中に罹患

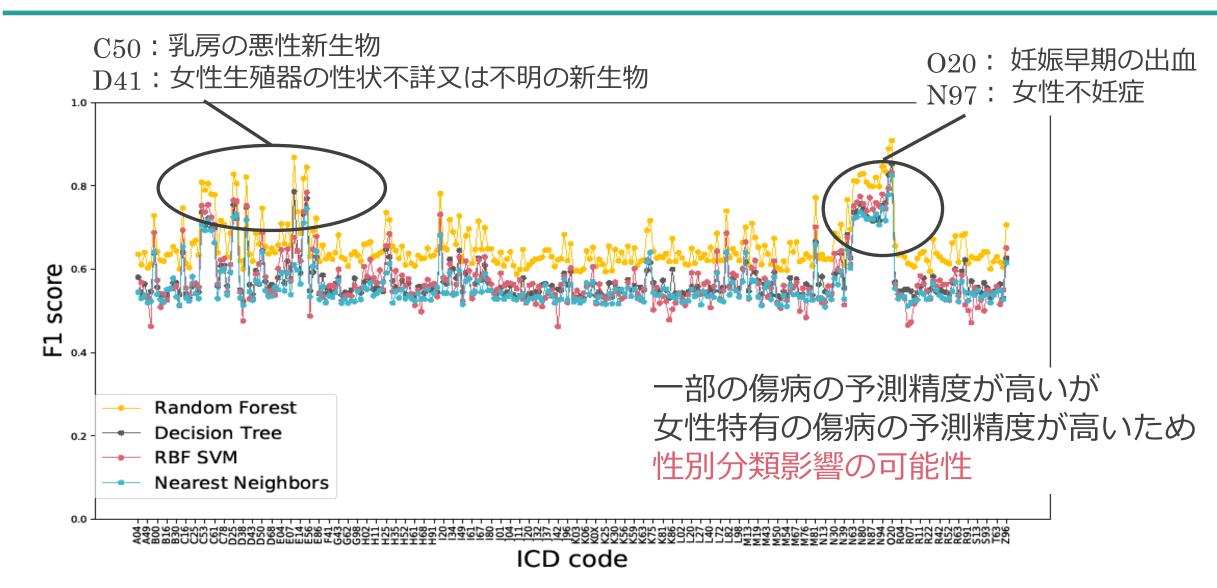
分析2:機械学習による罹患予測モデル

- ■罹患を健康診断から274種類の予測モデルを作成
 - □傷病レセプトデータの274種類の病気

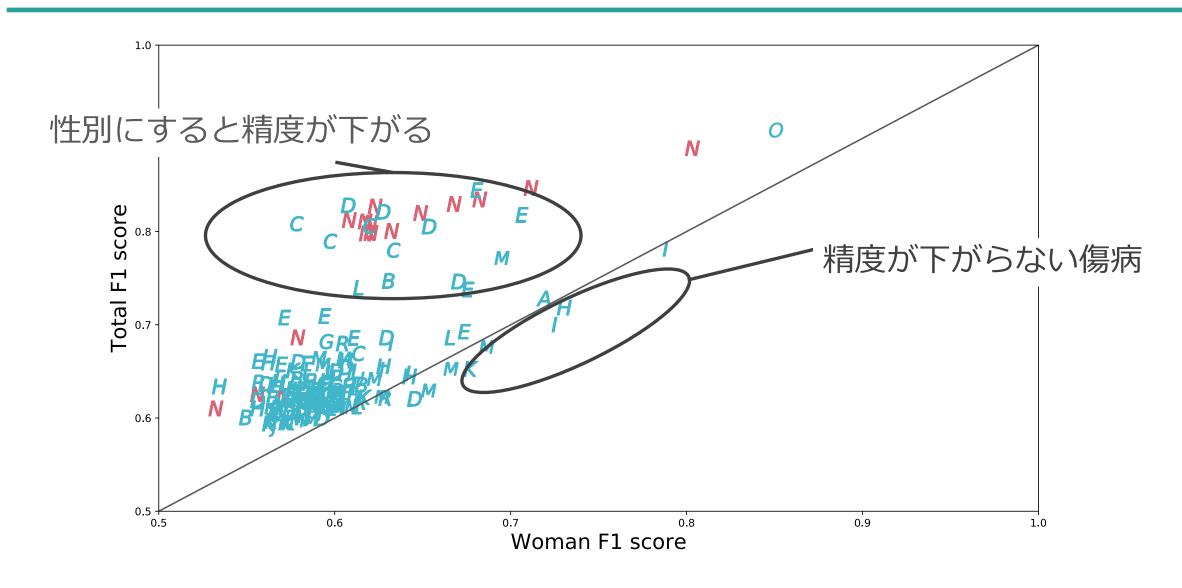
■作成手順

- 1. 4つ異なる予測アルゴリズムで学習
 - □ K-近傍法
 - □ SVM
 - □決定木
 - □ランダムフォレスト
 - ※ハイパーパラメータは全てデフォルト値使用
- 2. 5分割交差検証,テストデータのF1 scoreにより評価

学習結果



性別を考慮したモデルの評価



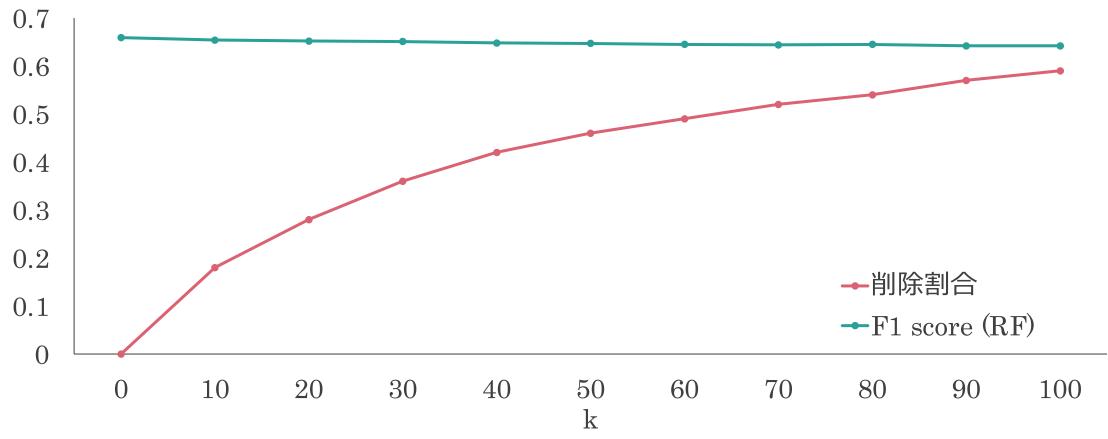
リサーチクエッション

- 1. 健康診断と傷病罹患の関係
- 2. 健康診断データから傷病罹患予測モデルの作成・評価
- 3. 匿名加工によるの予測モデル精度の劣化

分析方法3: 4匿名

- ■作成した予測モデルの精度が追加の匿名加工により、 どの程度精度が劣化するかを確認する
- ■方法
 - 1. 健康診断データの13種類の問診結果を疑似識別子(QI)とする
 - 喫煙,運動習慣,睡眠,食習慣,etc..
 - 2. QIをk=10~100匿名化する(10刻み)
 - 行削除のみ
 - 3. 匿名化したデータで、予測モデルの学習/評価

加工結果(RF)



k=100でレコードが約60%減少 RFで、F値が最大で0.02しか変化しない

まとめ

- ■健康診断データは、非常に有効であり傷病罹患の予測などに活用可能
- ■個人情報保護法の改正により,死亡票の使用不可
- ■匿名加工情報である健康診断データから有益な知見を得た
 - 1. 健康診断と傷病の関係について匿名加工データから、既存のコホート研究と同様の結果が得られた。さらに、睡眠を十分にとることは3年以内の罹患リスクを0.89倍に下げるなど新たな知見を得た.
 - 2. 健康診断から3年以内の罹患を予測するモデルを279傷病について実施 ランダムフォレストでは平均で65%の精度で予測できる
 - 3. K匿名化により、レコードが最大60%減少しても、F値は最大0.02しか変化しない。