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Abstract—Bitcoin is a digital currency that aims to offer
anonymity. However, anonymity is less secure than it is be-
lieved to be because it is based on using pseudonyms for
addresses. To demonstrate this weakness, we used statistics
related to transaction histories and the frequency of transactions
to deanonymize a set of bitcoin addresses. In this paper, we
explore the fundamental properties of Bitcoin addresses based
on actual Bitcoin transaction data. We propose a new method for
deanonymizing Bitcoin addresses from a set of output addresses
and we demonstrate that 80.5% of addresses could be identified.

Index Terms—Bitcoin, deanonymize, output address

I. INTRODUCTION

Launched in 2009, Bitcoin is one of the oldest digital
currencies in use. Because transactions occur without the help
of any third party, Bitcoin appears to preserve a high degree
of anonymity. However, several studies have described the
deanonymization of bitcoin addresses. Meiklejohn et al. [1]
combined addresses managed by the same user to demonstrate
the extraction of specific transaction patterns for individual
users. Dupont et al. [2] succeeded in revealing a target user’s
time zone by analyzing the time distribution of transactions.
The accuracy of their proposed scheme was only moderate,
with an average identification ratio of 72%. The main reason
for errors was that different users may have similar lifestyle
patterns. Moreover, it is not clear how much anonymity de-
pends on the frequency of transactions and the output address
sets used.

To address this issue, we focus on the addresses specified in
transactions because the statistical properties of an address’s
usage, such as its mean frequency, duration, and set of output
addresses, can help to identify the owner of the address. We
assume that the set of output addresses used by a particular
user will be very stable over time and therefore using this
set of addresses can help trace the user. The purpose of this
study is to investigate the proportion of addresses at risk of
deanonymization by an analysis of the frequency of addresses
used in transactions and the output set of addresses.
We conducted an experiment on deanonymizing Bitcoin ad-
dresses based on a large-scale dataset of transactions collected
from the Bitcoin blockchain over 1.5 years since 2012.

In this paper, our contributions are as follows.
1) We propose a new method for deanonymizing Bitcoin

users from the set of output addresses used.

2) We evaluate the anonymity of the addresses. One of
the main results of our experiment is that 559 Bitcoin
users were uniquely identified from the addresses sent
from the same source address. Compared to other work
using time-zone signatures [2], our proposed scheme
showed improved accuracy, with 80.5% of addresses
being identified.

II. BITCOIN

A. Background

Bitcoin is a digital currency that operates without a central
manager such as a government. Instead of a central trusted
party, a majority of the Bitcoin users approve the transactions
issued within a predetermined interval. Data about Bitcoin
transactions are stored in a blockchain. A new block is gener-
ated about every ten minutes and is contained in a blockchain.
The mechanism for ensuring the integrity of transactions is
called decentralized management.

B. Addresses

A Bitcoin address is a hash value of the form
“1A1zP1eP5QGefi2DMPTfTL5SLmv7DivfNa.” A Bitcoin
transaction specifies the addresses of the sender and the
recipient. An address is specified by applying two secure
hash functions SHA256 and RIPEMD160 to a target public
key and appending a checksum encoded using Base58. It is
known that it is impossible to invert the address generation
process to obtain the public key from the address. Despite
this, it should be noted that the process is deterministic.
Therefore, the owner can be identified easily even if the
corresponding public key is unknown. To prevent the owner
being identified via the address, a Bitcoin wallet allows a
user to have multiple addresses.

C. Transactions

Table I shows the data format for the Bitcoin-transaction
data structure. A Bitcoin transaction contains input and output
fields specifying the sender’s address(es) and the receiver’s
address(es), respectively.Note that multiple addresses may be
specified for either or both fields.
For example, Tx4 in Table II involves three inputs and two
outputs.



TABLE I: Transaction data structure

Field Explanation
Version Version of transaction
Input Counter The number of inputs
Inputs Input data
Output Counter The number of outputs
Outputs Output data
LockTime Block height or Unix timestamp

TABLE II: Transactional information in a block

ID Input Output Remittance [10−8]
Tx1 N/A a2 2500000000
Tx2 a2 a4 900000
Tx3 a3 a2,a3 60000000
Tx4 a2,a2,a5 a1,a2 110000000
Tx5 a3 a1,a2,a3,a5 40000000

The specification of output addresses depends on the input
addresses. Consider the example block of five transactions
Tx1, Tx2, Tx3, Tx4, and Tx5 in Table II. Addresses a2 and
a3 are specified as inputs in the two transactions Tx2 and Tx4,
whereas a3 is specified as an input in the two transactions
Tx3 and Tx5. Address a5 is specified as an input in the one
transaction Tx4.

III. DATA COLLECTION

In this section, we describe the method used to collect the
transactional data and the address data used in our experi-
ments.

A. Transactional Data

To collect the data, we used a bitcoind client, which down-
loads all blocks before they are ready to be used online. We
collected transaction from the client datastore, implemented
as an SQLite3 database. The database contains an Input table
(see Table III) and an Output table (see IV). Both Input and
Output tables have five attributes, including Time, Height, and
Addresses. Note that a block is divided into several records
classified in terms of the two tables. For example, the records
in Table III and IV were retrieved from the same block, as
specified by the TxHash attribute.

Table VI gives a summary of the data used in our experi-
ments. The dataset contained 100,000 blocks describing trans-
actions for 1.5 years and involving a total of 559 addresses.

B. Owner of an Address

Given that a Bitcoin address is a pseudonym, nobody knows
who has which address. Under the assumption that the secure
hash function is not invertible, it is impossible to identify the
owner from an address. However, we have two ideas about
identifying the genuine owner of an address.

The first method involves collecting addresses that have
been specified by the coinbase for the block. The destination
addresses of the coinbase are often managed by a mining pool
service whose location and country are known publicly.

The second method is to collect addresses that have been
published via the website Bitcointalk [5], a well-known online

Fig. 1: Profile page in bitcointalk

forum about Bitcoin. Bitcointalk provides a profile page for
each user (see Fig. 1), where “Name” and “Bitcoin address”
attributes are available and we can learn the genuine owner
of the addresses. Not all Bitcoitalk users reveal their address,
but some specify an address to which they ask donations to be
sent as a gratuity. Even when a nickname is specified in the
profile page instead of a genuine name, this is sufficient for our
experimental purposes to identify the owner from an address.
In this way, we collected more than 500 addresses and the
corresponding owner’s name published on these profile pages.

Table V shows parts of addresses, names, and location
data collected from the Bitcointalk website. In principle, an
address is assigned indirectly from user information. However,
as shown in the third record of Table V, the first six letters
“Anduck” of the address after the leading “1” matches his
name.

IV. RE-IDENTIFICATION EXPERIMENT

A. Overview

In this section, we evaluated destination-address anonymity
as described in Section III. We were interested in how many
addresses could be identified during our re-identification ex-
periments.

In the experiment, the dataset was partitioned into training
and a test data. We evaluated the similarity of subsets of
Bitcoin addresses, defined in terms of the Jaccard distance.

Let A be a set of addresses{a1, . . . , an } for which the
owner is to be identified. Let Oi(aj) be a subset of addresses
specified as the outputs from input address aj in the i-th
duration. Let Ti(aj) be subset of discriminated times {t1, . . . ,
tni,j

} when a transaction related to address ai is stored in
the i-th duration. For example, in Table VIIa, O1(a1) = {a1,
a2, a4}.



TABLE III: Example of input table

Attribute Explanation Value for example
Time Time mined block stored in the transaction 2012/09/22 10:47:23
Height Block number 200001
TxHash Transaction ID d635410b5408592d54f59a010ae77974726b2a7ccd26bc76f9a68e02babe3ee5
PreTxHsh Transaction ID used this Tx 2d6dc2475b5ca40a081b857cc2b7e9fa29376bc299bed62c2d72244ec5a05a6a
InputAddr Sender’s address 1EEYSdwDg9Rvu7bj3AjjJ662yyDbUG1fNi

TABLE IV: Example of output table

Attribute Explanation Value for example
Time Time mined block stored in the transaction 2012/09/22 10:47:23
Height Block number 200001
TxHash Transaction ID d635410b5408592d54f59a010ae77974726b2a7ccd26bc76f9a68e02babe3ee5
OutputAddr Receiver’s address 1ArR7vf17C9ThWi5yt3c74TamCnPUaGb6e
Value Amount of Bitcoin[10−8BTC] 560000000

TABLE V: Sample data collected from Bitcointalk

Address Name Location
1KFHE7w8BhaENAswwryaoccDb6qcT6DbYY macbook-air China
1DNNERMT5MMusfYnCBfcKCBjBKZWBC5Lg2 BitHits None
1Anduck6bsXBXH7fPHzePJSXdC9AEsRmt4 Anduck None

In our experiment, we observed the change in a set of output
addresses in k durations. For example, consider the subsets of
output addresses O1(aj) and O2(aj) in Table VIIa, where we
have divided the dataset into two durations. In Table VIIb, we
have divided the data into three durations. The size of each
divided dataset is almost the same size, based on the block
numbers. Note that the size of each subset increases as the
number of divided durations k decreases. In the experiment,
if there are no transactions in any duration, we remove the
address from the whole dataset.

We assume that the output addresses sent from an address
are stable and can therefore be used as a signature to identify
the owner of the address based on the similarities between sets
of output addresses. The degree of similarity between sets A
and B is defined by the Jaccard distance:

J(A,B) =
|A ∩B|
|A ∪B|

,

where B is the template subset of a target input address and
A is a subset to be tested for association with the same owner.

Algorithm 1 shows how our re-identification method works.

In their study, Dupont et al. [2] identified an address based
on a set of times of transactions. Whereas our scheme exploits
the signature of output addresses, their scheme involves a mod-
ification to Algorithm 1, whereby the set of output addresses
is replaced by the set of times of blocks for which a relevant
transaction occurred. In the example of Table III, the element
10 of 10:47:23 is included in the set of times.

B. Experimental Results

1) Change of accuracy with respect to number of partitions
k: We show the change of average recall R and average

TABLE VI: Summary of dataset

Period 2012.09.22 - 2014.05.10 About 1.5 years
Address number 559
Block number 200,001 - 300,000 100,000 blocks

TABLE VII: Example of a dataset

(a) k = 2

Term i 1 2
10 months 10 months

a1 {a1, a2, a3} {a2, a3, a4}
a2 {a2, a5} {a4, a4}
a3 {a3, a4, a6} {a4, a5, a6, a7}

Training data Test data

(b) k = 3

Termi 1 2 3
7 months 7 months 7 months

a1 {a1,a2} {a3,a4} N/A
a2 {a2,a5} {a4,a5} {a5}
a3 {a3,a6} {a4,a6} {a5,a7}

Training data Test data

precision P defined with respect to the number of partitions
k in Fig 2.

R =
1

n

n∑
i=1

Ri,

P =
1

n

n∑
i=1

Pi,

where Ri is the recall of input address ai, defined as the
fraction of output-address sets identified correctly out of all
ai’s address sets (= k−1), and Pi is ai’s precision, defined by
the fraction of address sets identified correctly over all outputs



Algorithm 1: Re-identification by Jaccard distance
Input: address set A, output address set O
Step 1. o is sets divided into k dataset

O1(a1), . . . , O1(an), . . . , Ok(a1), . . . , Ok(an)
Exclude address sets O1(aj), . . . , Ok(aj)
such that any subset Oi(aj) is empty

Step 2. Let data O1(aj ) be a training data and O2(aj), . . . , Ok(aj) be
test data. For aj ∈ A, i-th duration identify the input address a∗l
such that Jaccard distance J(Oi(a

∗
l ), O1(aj)) is maximized.

Output: Predicted a∗1 ,. . . address
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Fig. 2: Change of average recall R and precision P with
respect to the number of partitions

identified as ai. As the number of partitions k increases, both
accuracies increase accordingly. As k increases, the target
test addresses also decrease, leading to no transactions in the
partition. We examined the potential test addresses in terms
of k, showing the numbers of test addresses in Table IX.
This table clearly supports our hypothesis of why the accuracy
decreases with k.

2) Change in accuracy with respect to number of transac-
tions for an address: Which dataset statistics most influence
the accuracy of re-identification? To answer this question,
we examine the accuracy distribution for various statistical
quantities.

Figs. 3 and 4 show the distributions of recall and precision,
respectively, with respect to the number of transactions. In this
plot, we use the dataset with k = 10. We found no significant
correlation between these two values in either plot. Note that
the address of “BTC Guild” in Figs. 3 and 4 involves many
transactions, indicated at the right edge of the figures. Because
the address is cited in many coinbase transactions, the recall
should be close to 1.0, but its recall is less than this because
many other addresses are wrongly predicted as also being the
address.

Fig. 5 gives a scatterplot of recall and precision in terms
of the number of transactions when the set of addresses is
divided with k = 10. We found a slightly positive correlation
between the two quantities.
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Fig. 3: Scatterplot of recalls Ri by number of transactions in
address
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Fig. 4: Scatterplot of precisions Pi by number of transactions
in address

3) Comparison of features: What are the most significant
features of re-identification? We examine two features, i.e.,
the set of output addresses and the set of times, in terms
of accuracy and discrimination distance between the genuine
owner and an imposter.

To investigate the effect of features on re-identification ac-
curacy, we measure the Jaccard distance between the genuine
owner’s addresses and an imposter’s addresses and derive the
distribution of the Jaccard distance between the two sets of
addresses for the dataset of output addresses with k = 10
(see Fig. 6), where the most frequent Jaccard distance is at 0.
The maximum Jaccard distance between imposter’s addresses
is 0.012, meaning that an output address is rarely encountered
again among the imposter’s addresses. Conversely, the Jaccard
distance between genuine addresses is distributed widely.
Based on this observation, we can confirm that it is possible
to identify an address based on this feature.

For the second feature, Fig. 7 shows the distribution of the
Jaccard distance between the genuine and imposter sets of
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Fig. 5: Relation between recalls and precisions by number of
transactions in address

TABLE VIII: Statistics for features

Minimum Maximum Mean % of 0
Output sets Same 0 1.0 0.038 55

Other 0 0.110 0.0001 99
Time sets Same 0 1.0 0.264 25

Other 0 1.0 0.155 29

transaction times for the dataset with k = 10. This implies
that the Jaccard distance between the two sets of transaction
times does not sufficiently distinguish them.

In summary, Table VIII gives the statistics for Jaccard dis-
tances for the set of addresses and the set of transaction times.
The average Jaccard distance for sets of output addresses is
greater than that for transaction times. Therefore, we conclude
that our proposed feature of the set of output addresses is more
useful in distinguishing addresses.
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Fig. 6: The distributions of the Jaccard distance between
genuine addresses and an imposter’s address for a set of output
addresses
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Fig. 7: The distributions of the Jaccard distance between
genuine addresses and an imposter’s address for a set of
transaction times
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Fig. 8: The average recall R with respect to the number of
addresses

4) Recall with respect to the number of addresses per
owner: How does the number of addresses per owner affect
recall? Heavy Bitcoin users may be at risk of identification
because of their output addresses. Fig. 8 shows the average
recall with respect to the number of addresses specified by
the owner. We plot recalls for two features, i.e., the distances
within the output set and within the set of transaction times.
The average recall of the output set is always higher than that
for the transaction-time set. Surprisingly, average recalls are
stable, i.e., do not depend on the number of addresses. The
recall for transaction times decreases by 1

n against n.

C. Anonymity

In this study, we evaluate the anonymity of the i-th input
address ai via the F value for an identification attack.

Fi =
2Ri · Pi

Ri + Pi
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Fig. 9: Distribution of re-identification ratio with respect to
the number of partitions k

TABLE IX: Target addresses with respect to partitions

k n
2 559
3 296
4 153
5 104
6 74
7 54
8 44
9 36
10 31

A larger F value implies a lower anonymity. We suggest that
an address can be re-identified if the F value is more than 0.5.
Fig. 9 shows the distribution of the re-identification ratio with
respect to the number of partitions k. The ratio is maximized
at 80.5% for k = 9, whereas the minimum is 39.5% at k = 10.
As the number of partitions increases, the re-identification ratio
increases.

From our experimental results, the accuracy of the recall
and precision ratio is not affected by quantities such as the
number of transactions in an address. Note that the risk of
an address being identified increases as the Jaccard distance
increases. Therefore, to preserve anonymity of addresses, we
encourage periodic address updating and avoiding use of the
same output address in too many trades.

V. CONCLUSIONS

We have investigated the anonymity of Bitcoin addresses
by experiments that aim to re-identify the owner from the set
of output addresses that the owner uses to send or receive
payments. The results indicate that 80.5% of addresses can be
identified from the Jaccard distance between subsets of output
addresses and neither the average recall nor the precision is
affected by the number of transactions per address.
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