Development of Cyber Incident Information Crawler

Kzuki ikegami,* Michihiro Yamada,* Hiroaki Kikuchi and Koji Inui

*Graduate School of Advanced Mathematical Sciences Meiji University,

Background

- Increasing of unauthorized access
- Damage to companies
 - Lost and altered data
 - Business interference
 - reputation
- Necessity of security management
 - Certification of Information Security Management System ISMS decreases cyber incident risk by 20%.[1]

Personal data of 1147 students were disclosed

Previous study

• Number of Cyber incidents / year [2]

name	JNSA: Japan security network association	Asahi Shimbun domestic newspaper	common
way	Some medias	a news paper	
# incident	788	279	145

[2] K.Ikegami,H.Kikuchi,Dataminingofreasonsofdatabreachbasedontheinformationleakage data set, The 80th National Convention of IPSJ, 2W-06, vol.3, pp. 543–544, 2018.

Problems

- Distortion
 - The incident reported by media were distorted by interests of the readers of news media.
- Cost
 - Investigation of all cyber incident for one year takes 3 days.

Our study

- Purpose
 - To comprehensively collect and classify cyber incident data automatically without any distortions.
- Approach
 - Develop a website crawler system for collecting cyber incident.
 - Develop a system which automatically classifies cyber incidents into some causes.

Features: TF-IDF values and 49 dimensions vector

- TF : frequency of index term *t* in document *d*.
- IDF : inverse frequency of documents that include index term *t*.

	Term	TF	IDF	TF-IDF
Accept	password	0.006	2.696	0.016
	website	0.003	3.572	0.011
	unauthorize	0.004	2.696	0.011
Reject	server	0.001	3.635	0.003
	account	0.004	2.283	0.009
	countermeasure	0.002	2.879	0.006

7

Extract by regular expression Input(release) Feb/2/2019 Some PCs were unauthorized accessed in A company. The number of compromised Personal data was <u>3000</u>.

features	input	Human error	Unauthorized access	Insider
lost	0	3	0	0
unauthorized	1	0	2	0
PC	1	1	1	4
entrustment	0	1	1	3
E-mail	0	2	0	0
	Cosine	similarity 0.33	0.87	0.45

Output : {*date* : Feb/2/2019, *scale* : 3000, *cause* : unauthorized access}

The extracted items

Input

Output

DeNA Co., Ltd.
2016/04/01
In Mobage, a portal and
social network for games
serviced by DeNA,a
malicious third party
impersonating a victim
user illegally gained
access to the system.
The total number of
compromised IDs was
104,847.

(The original Japanese statement was translated into English)

-	Extracted	Correct(JNSA)	
Company name	DeNA	DeNA	
industry	IT companies	IT companies	
date	2016/4/1	2016/4/1	
Number of victims	104847	104847	
Cause of leakage	Unauthorized access	Unauthorized access	
Summary of incident	n/a	\checkmark	
URL	n/a	n/a	
Social responsibility	n/a	normal	
Kind of breach	n/a	Personal information	
means of leakage	n/a	internet	
Post response quality	n/a	normal	
l'our opponde quanty	П/а	nonnai 🤍	

Statistics

statistics

duration	# companies	# collected Press releases	<pre># collected press releases related incident</pre>	rate
2004/10/1 - 2018/11/2	537	17,957	191	1%

• comparison(2004-2016)

	JNSA	Our data	common
# companies	65	34	23
# incidents	251	141	80

Change in number of incidents

Crawler < JNSA

Example of incidents

A High interests

CyberAgent, Inc. Jan 1, 2010 Probably 450 user IDs and passwords were compromised.

B Low interests

Tokyo Gas Co., Ltd. December 8, 2016 An employee lost 3,463 receipts including customer information.

Accuracy of estimates

Accuracy $= \frac{\text{the incidents with correctly estimated causes}}{\text{all the target incidents}}$

	date	# victims	cause	date & victims & cause
accuracy	0.882	0.792	0.719	0.505
	157/178	141/178	128/178	90/128

The accuracies of each of items exceed 70% but fall to 50% when some attributes are combined.

Effect of Security Management

• The probability of incident occurring : $p = \frac{1}{1 + e^{-z}}$

$$z = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_m$$

- β_i : coefficients of each variable
- X_i : vector of explanatory variables. E.g., # employee, management and industry
- The adjusted odds ratio in β_1 is $OR = e^{\beta_1} = \frac{p}{1-p} / \frac{q}{1-q}$

	With <i>M</i>	Without M			
Incident	p	q			
No incident	1 - p	1-q			
<i>M</i> : management					

Result of logistic regression

	(Intercept)	# employee	ISMS	CIO	External inspection
Estimate(β)	-23.26	0.399	1.222	0.0002	-0.959
Odds ratio	0.000	1.49	3.32	1.00	0.383

The probability of the incident occurring in ISMS certified companies is three times higher than that of company without certification.

Conclusions

- We have developed automatic crawler system that collected more than 190 articles related with incident.
- The accuracy of single item exceeds 70%.
- The coverage of incidents we collected are as same as JNSA Dataset after 2013.
- As future research, we will consider how to improve the identification accuracy of causes, increase the coverage of companies, and will provide open databases for incidents.