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Abstract. Personalized high quality services including route finding
and the nearest shops and restaurants are provided based on current
location of owner of the smart device. However, location trace are very
sensitive data for privacy. It allows to estimate our home residence or of-
fice. Hence, privacy preservation is required for reporting current location
traces from smart devices.
This paper studies the privacy preservation of time-series location trace
using LDP algorithm RAPPOR. Location trace is independently ran-
domized according to given procedures and then is sent to service provider
who aggregates data with noise. To discard noise and estimate true statis-
tics, the maximum likelihood estimation is used in RAPPOR. But, MLE
could fail if data distribution is skewed or data contains extraordinary
values. To address the problem, we propose the expected maximization
for estimate of true distributions. The proposed algorithm iteratively
improves estimated posterior probabilities based on Bays’ theorem until
the difference converged for all elements. Our experiment using 6,528
individuals’ location trace in Tokyo provided from Nightley Inc. demon-
strates that the proposed algorithm performs better than the original
MLE used in RAPPOR for every special ward in Tokyo in one day. We
found that the accuracy is improved as privacy budget ϵ is smaller, and
as many population is provided.
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1 Introduction

Smart devices allow us to have better personalized service in the era of IoTs.
For example, commercial services provide route finding and the nearest shops
and restaurants based on current location of owner of the smart device. As for
measure against Covid-19, time-series population distributions provided from
cellphone providers plays important role for evaluation of restriction of people’s
movement.

However, location traces are very sensitive data for privacy. It allows to es-
timate our home residence or office. The correlation between any given loca-
tion traces may reveal the personal relationship between them. Location service
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provider may be compromised by malicious third party. The platforms may con-
tain potential insider who can steal and disclose private customer’s data. There-
fore, privacy enhancement for location trace is necessary for preventing privacy
threats.

Differential privacy has been studied to guarantee privacy preservation. With
Laplacian mechanism, the statistics is perturbed so that no one can distin-
guish two neighboring datasets that differ only one individual. Erlingsson et
al at Google proposed a LDP algorithm, Randomized Aggregatable Privacy-
Preserving Ordinal Response (RAPPOR)[1]. It is well known that RAPPOR
permits collecting over large number of devices without revealing private at-
tributes such as frequencies, categories, and statistics of the devices. RAPPRO
is based on randomized response[3] and estimates true attribute in the most
likelihood value (MLE).

MLE used in RAPPOR does not always work well. It could fail to estimate
true data if the distribution of data is biased or data contains extraordinary
high/low values. We find that unbalanced distribution yields significant error in
estimate in this paper. Since it estimate at the most likelihood value, even if
only one illegal value can spoil the overall accuracy. Unfortunately, this could
happen for use-case of location-based services where movement of people are
unpredicted.

In this paper, we propose an iterative approach to improve estimate accuracy
of perturbed data in LDP algorithm. Our idea is based on Bays’ theorem and the
Expected Maximization (EM) algorithm[5]. It estimates the posterior probability
that are most consistent with given perturbed data. Due to iterative processes,
the estimate is improved repeatedly. Hence it is more stable and more robust
against unexpected behavior of hazard records.

We conduct an experiment using SNS-based location trace to demonstrate a
feasibility of the proposed algorithm and to clarify accuracy improvement in the
real location data. Our data contains 6,528 individuals’ location trace in Tokyo
provided from Nightley Inc. that are classified into several smaller special wards.
We show the comparison between our proposed estimate (EM) and the MLE
used in RAPPOR for several privacy budgets ϵ.

Our contribution has two folds.

– We propose a new algorithm to estimate the distribution of private data from
perturbed data in RAPPOR. Our proposed algorithm improves accuracy of
estimate based on iterative process of Bayesian posterior probabilities.

– We show the experimental results using a large scale location trace data in
Tokyo with several smaller wards. The result shows that the proposed one
performs better than the MLE used in RAPPOR for significant improve-
ments.
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2 Local Differential Privacy

2.1 Fundamental Definition

Suppose that users periodically submit their location data to a service provider.
Differential privacy guarantees that the randomized data does not reveal any
privacy disclosure from them. On the other hand, Local Differentially privacy
(LDP) needs no trusted party. The private location data are randomized by users
before submitting to the service provider. LDP is defined as follows.

Definition 1. A randomized algorithm Q satisfies ϵ-local differential privacy if
for all pairs of values v and v′ of range V and for all S ⊂ Z and for ϵ ≥ 0,

Pr[Q(v) ∈ S] ≤ eϵPr[Q(v′) ∈ S]. (1)

2.2 RAPPOR[1]

Erlingsson et al at Google proposed a LDP algorithm, Randomized Aggregat-
able Privacy-Preserving Ordinal Response (RAPPOR)[1]. It is motivated by an
application to track the distribution of users’ browser configuration in Chrome.

Let vi be element of V and be flipped according to randomized mechanism
Q. Output zi is set to be 1 for vi = 1 with probability p, and 0 with probability
q = 1− p as,

zi =

{
vi w/p p
1− vi w/p q

In RAPPOR input vi is so called “one-hot” encoded as a d-bit vector that
contains exact 1 one and d − 1 zeros. Sensitivity ∆f , the maximum influence
that a single individual can have on the result of a randomized response, is 2
bits. For instance, suppose user 1 and 2 have v = (0, 1, 0, 0) and v′ = (0, 0, 1, 0),
respectively. A probability that randomized algorithm Q outputs z = (0, 1, 0, 1)
for v is

Pr[Q(v1) = (0, 1, 0, 1) | v = (0, 1, 0, 0)] = (1− q)p(1− q)q.

Similarly, user 2 has the same output z with probability of Pr[Q(v′) = [0, 1, 0, 1]|v′] =
(1− q)q(1− p)q. If we set

p =
e

ϵ
∆f

1 + e
ϵ

∆f
=

e
ϵ
2

1 + e
ϵ
2

and q =
1

1 + e
ϵ
2

then, it satisfies ϵ-local differential privacy as follow

Pr[Q(v) = z | v]
Pr[Q(v′) = Z | v′]

=
(1− q)p(1− q)q

(1− q)q(1− p)q
≤ eϵ.

Intuitively, no one can distinguish v and v′ for users from the randomized
output Z and hence the local (value) privacy is preserved. The privacy budget ϵ
controls the degree of privacy and improves privacy as it is close to 0.
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Generally, n-bit vectors v and v′ have sensitivity ∆f =
∑n

k=1 ||vi − v′i|| ≤ 2.
Letting r and r′ be numbers of inconsistent bits in v and v′, respectively, we
have Pr[Q(v) = z ∈ S|v] = pn−rqr and Pr[Q(v′) = z ∈ S|v′] = pn−r′qr

′
. After

all, we confirm that Equation (1) holds as

Pr[Q(v) = z | v]
Pr[Q(v′) = z | v′]

=
pn−rqr

pn−r′qr′
=

(
p

q

)h′−h

= e
ϵf
2 ≤ eϵ

where ∆f = h′ − h.

3 Improvement of Estimate

3.1 Most Likelihood Estimate

We consider a problem of estimating population distribution from the random-
ized in RAPPOR in this section.

Let n be a population of city x at a time. Suppose that people who live in
the city move in their daily life. So, the current population is dynamic quantity
ranging from 0 to the maximum ℓ, say the total population in the state that city x
belongs. According to RAPPOR algorithm, Let n′ be the randomized population
of x according to the RAPPOR algorithm. With probabilities p (true) and q
(flipped), the expected value of binomial distribution gives n′ = np + (ℓ − n)q,
which leads the most likely estimation (MLE) of n as

L[n] =
n′ − ℓq

p− q
.

Letting h be the number of n individuals who submit 1, we have probability
distribution of n by addition of binomial distributions as

p(n) =

(
n
h

)
phqn−h +

(
ℓ− n
n′ − h

)
pℓ−n−n′+hqn

′−h

Fig. 1 shows the probability distribution of population of Shinjuku city at
14:00. The randomized population is increased around 2100.

3.2 Iterative Estimate

MLE used in RAPPOR algorithm works well for most cases but could be suffered
low estimate accuracy for biased distribution. Instead, we consider an iterative
estimate approach known as Expectation Maximization (EM) algorithm.

EM algorithm performs an iterative process for which posterior probabilities
are updated through Bayer’s theorem. Each iteration estimate the best proba-
bilities θi for all cities i that are consistent with the given randomized outputs Z
computed in RAPPOR. Hence, it is more robust against unbalanced distribution
than the MLE is.
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Fig. 2. Estimate population n∗ with re-
gards to number of iterations k

Algorithm 1 EM algorithm for RAPPOR
θ
(0)
i ← a population of city i.

repeat(E-step)
k ← 1
Estimate posterior probability Pr[Vi = 1|Z] in Eq. (3).
(M-step) Update marginal probability θ

(k+1)
i in Eq. (4).

until |θ(k+1)
i − θ

(k)
i | ≤ ϵ′ return ni = ℓθ∗i

Algorithm 1 shows the proposed Em algorithm for estimating true distribu-
tion from randomized data according to RAPPOR. It has two steps; Expectation
(E-Step) and Maximization (M-Step). In the E-Step, Bays’ theorem plays an sig-
nificant role in estimating as the following ways.

Let Vi be random variable of population of i-th city in m cities in the state
and Z be that of randomized one in RAPPOR. Conditional probability given
Vi = 1 is

Pr[Zi|Vi = 1] =
Pr[Zi, Vi = 1]

Pr[Zi = 1]
. (2)

Bayes’theorem gives the posterior probability of Vi = 1 given the randomized
value Z as

Pr[Vi = 1|Z] =
Pr[Z|Vi = 1]Pr[Vi = 1]∑m

j=1 Pr[Z|Vj = 1]Pr[Vj = 1]
=

Pr[Vi = 1|Z]θi∑m
j=1 Pr[Z|Vj = 1]θj

, (3)

where θi is the estimated probability of i-th city.
In the EM algorithm, the above Bayes’ estimate is iterated to improve accu-

racy. For every iteration, a marginal distribution θ
(k)
i is replaced by the mean of

posterior probability as

θ
(k+1)
i =

∑
j∈m

Pr[Vi = 1 |Vj = 1)θ
(k)
i . (4)
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It continues until the estimate converges for all cities. Let θ∗i be the converged
probability θ

(k+1)
i if |θ(k+1)

i − θ
(k)
i | is less than a threshold of iteration. The final

estimate is n∗
i = ℓθ∗i for city i ≤ ℓ.

Fig. 2 shows the improvement of estimated population n(∗) with regards to
the number of iteration k. Estimated population in RAPPOR with ϵ = 1 and
3 are plotted the figure, where the dotted line indicates the true population.
Obviously, the accuracy is improved as k increases. We find the estimate is
converged around k = 200 even for very strong privacy budget ϵ = 1.

4 Experiment

4.1 Objective

Objective of the experiment is to explore the accuracy improvement using open
location data and to demonstrate that the proposed algorithm works better than
MLE in RAPPOR.

4.2 Data

Our experiment uses the time-series location data published from Nightley Inc.
[4]. It is a synthetic data based on tweets of Social Networking Service. Ta-
ble 2 shows specification of the dataset. We use one from the Nightley dataset
that contains location trace for 6,258 individuals for a day. The populations are
changed as people move from home to office or shops as shown in Table 4.

The city of Tokyo consists of 23 special wards. For each wards, we identify
how many individuals stay for every three hours based on latitude and longitude
provided with the trace (used by Google Map API). The time-series population
for some major wards are shown in Table 3 and Fig. 3. We observe two typical
behaviors;

(a) residential area, where populations are higher in morning and night, e.g.,
Nakano and Koto wards

(b) office area, where many schools, office and shops are located and population
in the daytime is higher than morning and night, e.g., Tyuo and Bunkyo
wards.

See Fig. 5 and 6 for heat-maps of population at 8:00 and 14:00. We find the dense
area is at the center of Tokyo at 14:00, where is not crowded in the morning (at
8:00). This is a typical people’s behavior in metropolitan city and our target to
estimate from randomized location traces.

Fig. 4 illustrates how location traces are processed in our scheme, where n
users move independently and belong one of 23 special wards. Their current
memberships to one of 23 wards are encoded as 23-dimension vector v. They
perturb their location in RAPPOR Q(v) before sending to a service provider.
The service provider simply sums all perturbed locations and publishes timely a
distribution of population Zi for i-th ward. With either MLE or EM algorithms,
we estimate the true distribution of population Ni.
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Table 1. Time-series
population Nightray in
Tokyo

time 　 population
　 8:00　 2,957

11:00 3,922
14:00 4,640
17:00 4,793
20:00 4,300
23:00 3,283

Table 2. Specification of Nightley dataset

Surveyed value POI, Timestamp (SNS post), The
road network.

Estimate value Movement courses, A place of res-
idence, Work location, Stay time,
Gender, What he do during a stay
(including shopping and the leisure)

Area Tokyo Metropolitan Area
Target time July, 2013, October, December
A time unit As for every five minutes

Geodetic datum WGS84 (EPSG:4326)
Records It is approximately 70,000 cases

with each csv file
File size Approximately 100MB
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Fig. 3. Time-serise Population in Tokyo
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4.3 Method

We apply RAPPOR algorithm to the Nightlay data for several privacy budgets
ϵ.
最尤推定法と EMアルゴリズムを用いて RAPPORアルゴリズムで収集した

データから推定した人口と実際の人口との誤差を ϵの値を変化させて求めた.誤差
を平均絶対誤差 (MAE)として,次のようにして求める.

1. Each user perturbs his/her current location v in RAPPOR for privacy bud-
gets ϵ = 0.5, 1, 1.5, . . . , 5.0 to have Q(v).

2. Service provider collects users’ location data for every time and publishes
the distribution of populations for 23 wards in Tokyo Z1, . . . , Zm.

3. We estimate populations in MLE and the proposed (EM) algorithms, denote
them by NMLE and NEM , respectively.

4. Evaluate accuracy for two estimates in mean absolute error (MAE), that is,∑
i=1...,m |Ni −NMLE |, where Ni is true population of i-th ward.

5. Repeat the above steps for ten times.
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Table 3. Time-series population in major
wards in Tokyo

time 8:00 11:00 14:00 17:00 20:00 23:00
渋谷区 262 394 533 532 479 351
新宿区 278 414 505 531 454 304
港区 267 393 509 479 416 284

千代田区 186 381 506 496 476 248
世田谷区 295 331 367 403 368 317
杉並区 165 209 227 246 187 188
中央区 121 177 216 188 148 118
文京区 98 166 181 197 206 143
品川区 98 147 182 173 147 99
中野区 154 117 116 133 141 142

Table 4. Statistics of time-series popula-
tion for 23 wards in Tokyo

time 8:00 11:00 14:00 17:00 20:00 23:00
mean 192.4 272.9 334.2 337.8 302.2 219.4
max 295 414 533 532 479 351
min 98 117 116 133 141 99

Fig. 5. heat-map of Tokyo at 8:00 Fig. 6. heat-map of Tokyo at 14:00

4.4 Result

Fig. 7 shows the distributions of estimated populations for m special wards in
Tokyo at 14:00. We perturb location data in RAPPOR with privacy budget
ϵ = 0.5 (very safety). We find that the proposed estimates (labeled as EM,
colored in orange) are close to the true population (blue) for almost all wards.
While, the ML estimates sometime are suffered with significant error, e.g., −200
and −400 at 12-th, 14-th, 23-rd, and 18-th wards.

The accuracy depends on wards and privacy budgets. So, we evaluate MAE
and depict the MAEs at time 8:00, 11:00, 14:00, 17:00, 20:00 and 23:00 in Fig. 8,
. . ., 13. In this plot, we show MAE for both estimate algorithms with respect
to privacy budgets ϵ = 0.5, 1, 1.5, . . . , 5.0. The results show that the proposed
algorithm performs better than the MLE used in [1] for every time. The differ-
ence between two estimates maximizes as privacy budget decreases (randomized
greatly and privacy is higher). We also note that the improvement of accuracy
is higher at 8:00 than that at 14:00. This error of MLE is caused because the
many people are in home in the morning, as shown in Fig. 3 and Fig. 5, and
the unbalanced distributions of populations spoils the maximum likelihood. We
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observe low accuracy for estimating population of small wards in Fig. 7. This
must be happen with the same reason.
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Fig. 7. Estimate populations for m wards in Tokyo at 14:00, ϵ = 0.5

5 Conclusion

We have studied the privacy preservation of time-series location trace using
LDP algorithm RAPPOR and proposed the expected maximization for estimate
of true distributions. The proposed algorithm iteratively improves estimated
posterior probabilities based on Bays’ theorem until the difference converged for
all elements. Our experiment using 6,528 individuals’ location trace in Tokyo
provided from Nightley Inc. demonstrates that the proposed algorithm performs
better than the original MLE used in RAPPOR for every special ward in Tokyo
in one day. We found that the accuracy is improved as privacy budget ϵ is smaller,
and as many population is provided. We conclude that the iterative approach
works well for data perturbed in LDP algorithm.
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